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Abstract 
 

Automatic target recognition (ATR) using radar commonly relies on modeling a 

target as a collection of point scattering centers.  Features extracted from these scattering 

centers for input to a target classifier may be constructed that are invariant to translation 

and rotation, i.e., they are independent of the position and aspect angle of the target in the 

radar scene. 

Here an iterative approach for building effective scattering center models is 

developed, and the shape space of these models is investigated.  Experimental results are 

obtained for three-dimensional scattering centers compressed to nineteen-dimensional 

feature sets, each consisting of the singular values of the matrix of scattering center 

locations augmented with the singular values of its second and third order monomial 

expansions.  These feature sets are invariant to translation and rotation and permit the 

comparison of targets modeled by different numbers of scattering centers.  A 

Mahalanobis distance metric is used that effectively identifies targets under “real world” 

conditions that include noise and obscuration. 

In particular, eight targets of military interest are sampled in tenth-degree aspect 

angle increments to extract scattering centers, and 36 subclasses that encompass ten 

degrees are specified for each target.  Each subclass is compressed to a nineteen-

dimensional singular value feature set, and because the spatial distribution of the 100 

nineteen-dimensional points in each subclass is approximately Gaussian, a mean and a 

covariance matrix represent each subclass.  An unknown target is represented as a point 

in the nineteen-dimensional feature space and matched to the closest subclass mean in 

Mahalanobis distance (Euclidean distance after the nineteen coordinate axes are rotated 
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and scaled so that the subclass covariance matrix is the unit matrix).  Targets with zero 

mean Gaussian noise added independently to their scattering centers are matched in both 

target identity and aspect angle (to within ten degrees) for noise variances up to that of 

the mean squared deviation of the scattering centers.  Also, as demonstrated using plots 

of probability of correct and false identification, targets obscured by 20% are identified 

correctly in 80% of the test cases. 

This research has developed a practical means (1) to build scattering center models, 

(2) to compress scattering centers into a small set of invariant features for target 

classification, and (3) to implement classifiers that effectively function in the presence of 

noise and obscuration for targets of military interest.

 viii



 
 

Nomenclature 
 
N  Number of vertices or points in a model 
Φ  Invariant function 
G  Group of allowable transformations 
g  Single element in the group of transformations 
Ixx  Output of a three-dimensional invariant function 
ix  Output of a one-dimensional invariant function 
ρx  Coefficient of radar transform from 3D to 1D 
zx

O  Object coordinate 
ux

K  Real part of Kendall coordinate 
vx

K  Imaginary part of Kendall coordinate 
df  Procrustes distance 
µx  Mean of a statistical distribution in one dimension 
σx  Standard deviation of a statistical distribution in one dimension 
H0  Null hypothesis 
F0(x)  Postulated distribution function 
F(x)  Experimental distribution function 
An  Maximum amplitude of nth scattering center 
(xn, yn, zn) Coordinates of nth scattering center 
f  Frequency of swept radar pulse 
fc  Center frequency of swept radar pulse 
(φ'n, θ'n) Location of nth scattering center maximum on viewing sphere 
γ'n  Exponential damping rate of nth scattering center in phi direction 
γ"n  Exponential damping rate of nth scattering center in theta direction 
∆φ min  Minimum sampling interval needed for unambiguous extraction 
l max  Maximum extent of target
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Classification of Radar Targets Using Invariant Features 

 
 
 

1 Introduction 
 
 

The Department of Defense has long been interested in performing Automatic Target 

Recognition (ATR) on radar images, and, more recently, on Synthetic Aperture Radar 

(SAR) images.  Higher resolution sensors can be designed and constructed to improve 

SAR ATR performance, but for difficult problems (identifying complicated targets of 

similar type in clutter) this approach provides limited improvement.  For example, the 

effect of resolution on target identification performance using artificially degraded high 

resolution SAR imagery is quantified in Appendix 1.  Using four very similar targets and 

comparing SAR classification performance over five different resolutions, it was 

determined that each doubling of resolution generates only a five to ten percent 

improvement in target identification performance. 

Thus, rather than advancing the development of more powerful and expensive 

sensors, this dissertation examines the use of more powerful techniques to improve the 

classification performance of existing sensors.  Specifically, a classifier that uses 

invariant features (i.e., inputs which are independent of target translation and rotation) 

and that uses three-dimensional target information (i.e., information which depends on 

azimuth, elevation, and range to many scattering center points on the target) is designed 

and characterized.  A successful classifier of this type may change the way future 

classifiers are developed. 
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This introductory chapter presents background, including material on invariants, 

scattering center representations, and existing two-dimensional classifiers; discusses the 

three-dimensional Motion and Geometric Invariant (3D MAGI) concept; and states the 

problem addressed by the dissertation.  The 3D MAGI algorithm, which was developed 

elsewhere [48], demonstrates that it is possible to extract target scattering centers which 

persistent for up to 20 degrees in aspect angle.  This persistence and the data compression 

enabled by the use of the invariant singular value features investigated in this dissertation 

make a three-dimensional classifier possible. 

1.1 Background 

This dissertation leverages two technologies: invariance theory and scattering center 

extraction.  Invariance theory provides criteria for identifying useful features from “raw” 

data and performs exceptionally well with point representations of target objects.  The 

extraction of point-scattering centers from radar images provides useful data 

compression.  The natural marriage of these two technologies enables the effective 

classification of radar (including SAR) targets. 

1.1.1 Invariance 

Suppose that an object x in the n-dimensional space Rn undergoes a group 

transformation g (g operates on object x denoted by g(x)) from a set of allowable group 

actions G, i.e., g∈G [16, 31].  Letting Ф be any function on Rn, Figure 1 shows that Ф is 

an invariant functional if it yields the same value for each object after all possible 

transformations.  That is, Ф(g(x))= Ф(x) for ∀x∈Rn and ∀g∈G.  Functions that are nearly 
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constant after all possible transformations (quasi-invariants) are useful because in many 

cases they can be treated as invariants [5]. 

When a three-dimensional object undergoes transformations from the appropriate 

group action and is projected onto a two-dimensional subspace, useful invariant features 

can be constructed for the projected object in this subspace.  This projection applies to 

tracking a moving target with SAR: the target undergoes appropriate group actions 

(translation, rotation, and scale) and is projected to a two-dimensional subspace by the 

radar. 

 

Figure 1. Representation of an invariant function.  Here an object in n-dimensional 
space undergoes an allowable group action g.  A function Ф is invariant if it yields the 
same value regardless of the group action.  In radar ATR allowable group actions 
typically translate, rotate, or scale the object. 
 

Allowable transformations are equivalent to changing the coordinates (e.g., 

multiplying by a unitary rotation matrix), so an invariant function is a coordinate-free 

description of an object: the invariant function is constant with respect to certain 

coordinate changes.  A simple example of an invariant is the ratio of two distinct 
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distances of three points on a line [51].  Regardless of how the line is rotated, translated, 

and scaled, the ratio of any two distinct distances of the three points is constant.  The 

application of invariants to the ATR problem is not new [24].  Invariants are constant 

functions by construction: if an object undergoes any allowable group transformation (or 

is expressed in an alternate coordinate system) invariant functions yield the same value.  

Invariant functions are expressible in an invariant basis that can be manipulated to 

remove undesirable variables, and they are specific to target properties (e.g., surface area 

and shape)[48]. 

For visible and infrared images, photometric invariants [28] and thermo-physical 

invariants [22] related to image properties (e.g., intensity and color) may be used to 

recognize objects.  The SAR ATR problem relies almost exclusively on geometric 

invariants, i.e., invariants determined by the geometrical relationship between object 

points.  These invariants are typically expressed using Euclidean distances, determinants, 

and inner products in the object space [38].  They are commonly ratios of determinants, 

where the numerators scale as surface areas and the denominators scale as volumes [48]. 

Any collection of N points that rotates and translates freely in a three-dimensional 

space has 3N - 6 invariants.  This expression is obtained because each point has three 

degrees of freedom, but three allowed rotations and three allowed translations eliminate 

six degrees of freedom.  Thus, an object composed of four points P1, P2, P3 and P4, where 

the point Pn is the vector [xn, yn, zn]T, has 3(4) – 6 = 6 invariants.  A useful standard 

transformation of the points that employs these six invariants, here designated I21, I31, I32, 

I41, I42, and I43, is 
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This transformation maps the first point to the origin, the second point to the x-axis, the 

third point to the x-y plane, and the fourth point to anywhere in the three-dimensional 

space.  It is expressed as a standard 3 x 4 matrix formed by the invariants so that the 

indices on each invariant indicate its column and row in the matrix. 

A statistical computer simulation quantifies the effects of noise and rotation on the 

performance of a simplified invariant classifier to justify the development of a more 

sophisticated classifier later in Chapter 4.  A quadrilateral, which is a coplanar three-

dimensional object, is chosen for simplicity, but it easily represents part of a target of 

interest (e.g., an airplane wing).  The projection of each object consists of four random 

coplanar points in a 100 x 100 pixel image.  The two invariant functions  
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are formed; they are ratios of the determinants of three distinct points on the object and 

capture essential three-dimensional information [23].  

In this statistical computer simulation, bivariate Gaussian noise with a standard 

deviation of one pixel in both the x and y directions is added to 18 rotations of each 

object point, in ten degree increments, to model the noise a typical video system may 
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experience in representing a three-dimensional object.  Although it is simplistic to 

characterize all variations in the projected image as bivariate Gaussian noise in the image 

domain, the high variance of the added noise (which is 1% of the image size) should 

more than compensate to make this a pessimistic case.  In this experiment, the invariants 

Φ1 and Φ2 identify all ten objects because the invariant point (Φ1, Φ2) of an object with 

noise is closer in Euclidean distance to the invariant point of the same object without 

noise than to the invariant point of any another object.  In rare instances, when rotations 

cause the determinants of facets of interest to approach zero or cause degenerate objects 

(four nearly collinear points) to be created, the invariants change by as much as five 

percent from the invariants of the original noise-free objects, but all objects are still 

correctly identified. 

When a four-point (N = 4) three-dimensional object is projected onto one dimension 

(a line), one-dimensional invariants may be formed, and translations along the line are the 

only transformations allowed.  There are N – 1 = 3 invariant functions, here designated i1, 

i2, i3, that can each be expressed as differences in distance between any two distinct 

points. 

Understanding the relationship between an object and its projection to a lower 

dimensional space gives further insight into the ATR problem [46].  If a High Resolution 

Radar (HRR) illuminates a three-dimensional object, the radar transforms the object 

points to two-dimensional image points.  The radar transform may be eliminated and the 

object/image relationship between the three-dimensional invariants and the one-
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dimensional invariants may be obtained as follows [48].  An unknown radar transform 

represented by the row vector [ρ1 ρ2 ρ3] creates the one-dimensional HRR profile  
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Solving for the unknowns of the radar transform and substituting into Equation 
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This equation provides an explicit relationship between the three-dimensional and one-

dimensional invariants and shows that no knowledge of the radar transform is needed 

when exact knowledge of the object-image relationship is available, i.e., the equation 

relates 1D and 3D invariants, but it does not involve the radar transform elements.  

1.1.2 Scattering centers 

ATR algorithms commonly extract scattering centers from SAR images for data 

compression.  The XPATCH program, developed elsewhere, employs a ray-tracing 

algorithm to solve Maxwell’s equations at each boundary and determines a set of point 

scattering centers that can produce the given image when the target model is illuminated 

by a radar pulse from a predetermined aspect angle [60].  It is much more efficient to 

store the location and intensity of a number of point scattering centers than the entire 
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SAR image when building a database library of all possible targets, and this scattering 

center representation is commonly compressed even further by extracting a few useful 

features.  However, ATR algorithms must input scattering centers (and often extract 

features) for many views of each target, since the position and intensity of the scattering 

centers vary significantly for small changes in aspect angle. 

1.1.3 Existing two-dimensional classifiers 

Some ATR algorithms rely on matching an unknown SAR image to templates of 

targets from a large database.  Since a target is recognizable only within a few degrees of 

aspect angle, each target has many associated poses that are individually stored as 

templates.  The unknown target is compared to templates within the library of possible 

targets and is matched to the closest template using a metric such as Mean Squared Error 

(MSE).  A classifier using this method requires large amounts of memory to store the 

templates and requires significant time to compare them. 

More sophisticated algorithms extract scattering centers from SAR images and derive 

useful features from the representation described in Section 1.1.2.  Each SAR image is 

treated as a two-dimensional projection of the target, and the features of this projection 

are compared against a library of features of two-dimensional projections of known 

targets.  Less memory is then needed for a classifier because the location and intensity of 

scattering centers are stored instead of the entire image, and the classifier is faster 

because it compares features of the images rather than entire images. 
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1.2 Three-dimensional MAGI concept 

The 3D MAGI algorithm was not used in the research reported here, but it is 

discussed because it demonstrates the feasibility of extracting scattering centers which 

persist for up to 20 degrees of aspect angle and because it provides valuable insight into 

the design of a true three-dimensional classifier.  In particular, the motion of the target 

relative to the sensor or the use of multiple sensors enables the extraction of the dominant 

three-dimensional scattering centers of the target.  The SAR image is partially modeled 

by the extracted scattering centers; the part of the image not accounted for by the model 

is the residual.   The representation of the target as a collection of points with known 

positions and intensities as a function of range explicitly determines three-dimensional 

invariants which describe the target independent of rotation, translation, and scale. 

The target identification scenario proceeds from target data acquisition by SAR 

sensors to identification of the target using its three-dimensional invariant “fingerprint.”  

Multiple sensors are deployed for a stationary target to extract scattering centers from the 

raw SAR radar data (also known as the Video Phase History or VPH), and these 

scattering centers are tracked in a target-centered coordinate system to obtain a range 

history that details the relative movement of each scattering center on the target.  These 

scattering center tracks are subtracted from the VPH to generate the residual VPH, and 

more scattering centers are successively extracted until an acceptable amount of the VPH 

is characterized.  The multiple sensors generate multiple two-dimensional views, and the 

3D MAGI algorithm provides three-dimensional estimates of the target scattering centers 

that persist over a wide range of aspect angles [48]. 
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The classifier developed in Chapter 4 uses similar scattering center estimates to 

classify military targets.  This classifier calculates invariant features from these estimates 

that describe the target three-dimensional properties independent of pose (angle of 

illumination), and this information is used to identify the target from a library of known 

targets.  A new entry in the target library can be created for each new target, and if this 

new target is seen again, it can be recognized.  Each successive viewing of a target 

generates more comprehensive three-dimensional information about the target. 

1.2.1 Three-dimensional reconstruction 

Any three-dimensional object of four points has six invariants (see Section 1.1.1).  

Any six views of this object create six equations in six unknowns.  If these six views are 

non-degenerate, then they create six linearly independent equations that may be solved 

for the six invariants.  If the sensor flies a marginally complicated flight path (e.g., it 

avoids tracing a conic section) or if the target moves in a similarly complicated path, the 

desired six non-zero eigenvalues in a system of linear equations is created.  The 

relationship between the relative motion of the sensor and the number of non-zero 

eigenvalues of the linear system of equations is given in reference [48] and is presented 

in Table 1. 

Figure 2 demonstrates how the three-dimensional model of a simple four-point object 

is generated from six views.  In this example the four points of interest are the nose, back 

of the two wing tips, and tail (p1, p2, p3, p4, respectively) on an aircraft.  To optimize a 

SAR flight path to recover all three-dimensional target information, rather than fly in a 
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straight line, the SAR sensor flies as complicate a flight path relative to the target as 

possible. 

Table 1. Relative Motion vs Non-zero Eigenvalues of System 
 

# of non-zero 
eigenvalues 

Relative Motion of Sensor 

1 Confined to a single line 
2 Confined to two non-coplanar lines 
3 Confined to a single plane 
4 Confined to a pair of planes 
5 Confined to an elliptic cone 
6 Full 3-D motion 

 

1.2.2 3D MAGI algorithm 

After the raw SAR data are collected, many radar artifacts must be removed.  This 

removal entails preparing a translation-compensated image that accounts for the relative 

motion of the target centroid from pulse to pulse.  The goal is to provide a target-centered 

view over time. 

Next, a number of scattering centers are extracted from the modified SAR data.  

Typically these scattering centers are prioritized by total energy, and the result is a range 

history of the extracted scattering centers over time.  Additional scattering centers are 

extracted iteratively until the residual energy reaches an insignificant level. 

The range history of the scattering centers commonly shows many scattering centers 

“crossing” over time.  It is important to track each individual scattering center over time 

and establish a correspondence among all the scattering centers for the entire range 

history.  The 3D MAGI algorithm uses velocity to track scattering centers when the range 

is ambiguous. 
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Figure 2. Three-dimensional reconstruction using six views.  Here four points of 
interest are tracked in three dimensions and mapped to a useful standard position: the first 
point to the origin (P1'), the second point to the x-axis (P2'), the third point to the x-y 
plane (P3'), and the fourth point to anywhere in the three-dimensional space (P4').  Only 
these invariant mappings are guaranteed to yield the same result for any view of this 
object.  Six linearly independent equations are solved to find the six three-dimensional 
invariants (I21, I31, I32, I41, I42, I43).  Note that six non-degenerate views are required to 
find all six 3D invariants of a four-point object and capture its 3D nature, but only two 
views (represented as two curved lines) are shown in the figure.   
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Once the range histories for each scattering center are known, a three-dimensional 

scattering center model of the target may be reconstructed.  The first step is a 

transformation from a space of dimension equal to the number of pulses to a space of 

dimension equal to the number of scattering centers.  This step involves solving a least 

squares problem and using the Singular Value Decomposition (SVD) to find a number of 

largest eigenvalues equal to the number of scattering centers.  The next step is to make a 

transformation to three-dimensional space with another SVD.  Because the noise is 

uncorrelated in the higher dimensional space, a large number of scattering centers 

produces a better estimate of the object [48]. 

An efficient estimate of the scattering center coordinates in 3D may be generated: as 

the number of samples approaches infinity, the variance of the estimates approaches the 

population variance divided by the number of samples [49].  As new data is collected on 

a target (i.e., more pulses), the accuracy of the model increases, since every 

nondegenerate new view of the target provides more three-dimensional information. 

In a demonstration conducted elsewhere, four corner reflectors were placed in a large 

flatbed truck such that they do not all lie in the same plane [48].  This arrangement 

formed the vertices of a tetrahedron, which illustrated the basic invariants discussed in 

Section 1.1.1.   The truck moved in the footprint of a SAR platform to create the 

complicated motion necessary to extract three-dimensional target data.  When given the 

raw SAR data of the target, the 3D MAGI Algorithm provided a near perfect 

reconstruction of the three-dimensional arrangement of corner reflectors. 
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For real targets the algorithm is set to extract enough scattering centers to effectively 

model the radar energy, since a real target has an unknown number of scattering centers 

and noise and background clutter can generate energy that may be modeled by low 

intensity scattering centers.  Corner reflectors persist over a wide aspect angle range, and 

each of the four corner reflectors is visible in the experiment.  However, real targets have 

some scattering centers that do not persist throughout a typical collection, and some real 

targets have axes of symmetry that generate multiple solutions.  

1.3 Problem statement 

The traditional deployment of SAR sensors involves flying a straight path over a 

stationary target.  Although this geometry provides a clear two-dimensional projection of 

the target and sensor, a complicated relative motion of the target relative to the sensor 

yields three-dimensional information.  In this case, the extracted scattering centers are 

three-dimensional (due to multiple noncoplanar projections), and the ATR algorithm may 

compare three-dimensional objects.  A key goal of this dissertation is the design of a 

computationally efficient three-dimensional classifier to identify targets from SAR 

images and the development of an underlying theory for this design.  This goal requires 

adopting or designing appropriate metrics to characterize three-dimensional targets. 

1.3.1 Three-dimensional classification 

The theory of classifying two-dimensional objects (e.g., images) is well understood 

[20]: objects are typically compared that are complete (i.e., every pixel has a value) and 

of the same size.  However, after extracting three-dimensional scattering centers, the data 

form a sparse array (i.e., in a sampled three-dimensional space many voxels, the three-
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dimensional equivalents of pixels, are empty).  Each array can have a variable number of 

scattering centers, and the weight (intensity) of each of these scattering centers can vary.  

Finding useful statistics for these collections of scattering centers that enable ATR is a 

challenge. 

Appropriate metrics to compare unknown targets to a library of known targets are 

needed before any three-dimensional classifier can be constructed.  It is unclear whether 

traditional two-dimensional metrics such as MSE can be extended to this three-

dimensional problem or whether new metrics must be developed.  This dissertation 

determines the suitability of existing two-dimensional metrics and explores new 

techniques to compare three-dimensional targets. 

1.3.2 Designing an optimal three-dimensional classifier 

A classifier using extracted three-dimensional scattering centers and invariants is 

designed for eight military targets.  The classifier should be optimal in that it uses 

features that are independent of any translation and rotation of the object in the radar 

image.  Furthermore, this classifier should exhibit high data compression and should be 

able to identify both noisy and obscured targets.  Since there is no precedent for a SAR 

classifier that uses true three-dimensional information, developing the theory of true 

three-dimensional SAR classification and implementing a system-level classifier design 

establishes the promise of this new technology.  Four steps are necessary to implement a 

practical classifier: building scattering center models (Chapter 2), extracting features 

from the scattering centers (Chapter 3), populating the classifier training data with known 

targets (Chapter 4), and using the classifier to identify other known targets 
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(Chapter 5). 

After constructing a true three-dimensional SAR classifier, its performance is 

compared to that of an existing two-dimensional classifier.  The memory requirements 

and speed of each classifier are determined (using a common computer for both 

classifiers to compare an unknown target to an existing target in the database).  The two 

types of classifiers are compared for “real world” conditions, specifically white noise and 

target obscuration.  The three-dimensional classifier is expected to yield significant 

improvement over the two-dimensional classifier, since a two-dimensional classifier must 

store multiple projections of three-dimensional targets (or use processor time to 

reconstruct them). 
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2  Model Building 

 
The 3D MAGI algorithm is computationally intensive and is not compatible with 

available ray-tracing algorithms.  More efficient procedures for creating discrete 

scattering center models of known targets are developed in this chapter for use with the 

invariant-feature classifier developed and discussed in the following chapters. 

Any complex radar return (i.e., a return that has both amplitude and phase 

components) can be modeled as a sum of scattering centers (see Section 1.1.2) that 

function as ideal corner reflectors [39].  If the coordinates of these scattering centers 

cannot be easily extracted from a complex radar image, then it may not be feasible to 

develop a good classifier due to the difficulty of populating a database of target models. 

An effective and tractable model for two-dimensional scattering has been developed 

elsewhere in which the sensor moves in a line perpendicular to the target sensor direction 

[13].  Here this model is extended to three-dimensional scattering in which the sensor 

moves nonlinearly in a closed path over a few steradians in a plane perpendicular to the 

target sensor direction, the target is stationary, and the sensor is in the far field (i.e., many 

wavelengths distant).  These assumptions are consistent with data collection from a side-

looking SAR platform and are easily satisfied in a controlled experiment. 

2.1 Three-dimensional scattering model 

A radar return or pulse is modeled as the sum of returns from N scattering centers.  

The amplitude An and coordinates (xn, yn, zn) of each scattering center are unknown.  The 

amplitudes do not significantly change over small angles, and thus they are considered 

constant from pulse to pulse.  The coordinate system imposed on target and sensor has its 
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origin on the target center and has its x-axis in the sensor direction for the first 

measurement.  Also, azimuth is in the φ direction (counterclockwise is positive), and 

elevation is in the θ direction (upwards is positive).  The electric field strength En of each 

individual scattering center and the total electric field strength ETOTAL are then extended to 

three dimensions: 
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Here An is the electric field amplitude of center n, f is frequency of the swept pulse, fc is 

its center frequency, γ 'n is the amplitude damping coefficient in the φ direction, and γ "n 

is the amplitude damping coefficient in the θ direction, where the damping coefficients 

describe the attenuation of the electric field amplitudes in the φ  and θ  direction. 

Invariant features of the resulting discrete set of three-dimensional scattering centers 

can be used to classify targets.  These invariant features are, by definition, independent of 

scattering center translation, rotation, and scale.  A different choice of coordinate axes in 

the collection geometry introduces a rotation matrix that does not affect invariant 

features.  Also, fixing one scattering center at the origin and calculating relative distances 

to the other scattering centers imposes an arbitrary translation that does not change 

invariant features. 

 2-2



 

2.2 Extraction procedure 

An effective model must represent a realistic radar system in an actual collection 

mode.  Here the radar system is assumed to operate at 8 - 12 GHz and at over 10 nautical 

miles (18.4 km) from the target.  It also assumed that all targets of interest are no larger 

than 30 m in any direction and that at any time the exact orientation of the target relative 

to the sensor is known.  The latter assumption is valid because target models are 

generated under controlled conditions (e.g., a radar turntable experiment).  Exact 

knowledge of relative sensor position permits more efficient scattering center extraction 

than the 3D MAGI algorithm. 

2.2.1 Extracting amplitude and “wrapped” phase 

The first step is to determine the peak amplitude of each scattering center and its 

associated phase from the Fourier transform of the radar return.  The exact position on the 

viewing sphere, the frequency of the radar, and the total returned signal are known.  The 

magnitude and phase of each vector that sum to the total electromagnetic field, ETOTAL in 

Equation (2-2) are unknown. 

A Fourier transform of a sum of complex exponentials in the spatial domain yields a 

sum of impulses in the frequency domain.  Phase shifts in the spatial domain correspond 

to translations in the frequency domain.  The peak amplitude of each scattering center is 

extracted from the Fourier transform of the radar return, where the relative intensity of 

each scattering center is preserved.  Since the exponentials are modulated on a carrier, the 

carrier is removed to bring the spectrum back to baseband. 
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The phase difference between scattering centers is determined from the difference 

between the impulse positions in the frequency domain, which is easier than extracting 

the phases of many complex exponentials summed in the spatial domain.  However, the 

phase difference between scattering centers is “wrapped” in that it must lie in the interval  

(-π, π], i.e., from greater than minus pi to less than or equal to π.  The “unwrapped” phase 

necessary to solve for the location of scattering centers differs from the wrapped phase by 

a multiple of 2π for each complete half wavelength of separation along the viewing 

angle. 

2.2.2 Unwrapping phase 

The absolute phase difference of any two scattering centers from one sample on the 

viewing sphere to the next must differ by less than π radians; otherwise this difference is 

ambiguous because it repeats every 2π radians.  If the maximum extent of the target lmax 

in multiples of half the radar wavelength is known, the minimum sampling distance on 

the viewing sphere is easily obtained as 
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The worst case occurs when the distance from one scattering center to another is the 

length of the target and the viewing angle is parallel to the distance vector from one 

scattering center to the other.  In this case, the maximum allowed difference in the length 

of the two paths is one half wavelength.  As shown in Figure 3, the hypotenuse of the 

right triangle is the extent of the target, and the longest leg is exactly one half wavelength 

less.  Thus the argument to be minimized is an inverse cosine, and the worst case is when 
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this argument is as large as possible.  For the assumptions made in Section 2.2, this case 

corresponds to a maximum sampling interval of 0.0326°. 

For sufficiently small sampling intervals, “wrapped” phase differences that are 

modulo 2π are converted to “unwrapped” phases.  All phase differences are constrained 

to lie in the interval  (-π, π], so a phase difference of 3π/2 is converted to -π/2. The first 

sample is chosen as an arbitrary reference for which the “unwrapped” phase is set equal 

to its “wrapped” phase.  The “unwrapped” phase for sample two is the “wrapped” phase 

for sample two plus the phase difference between “wrapped” sample two and “wrapped” 

sample one.  The “unwrapped” phase for sample three is the “wrapped” phase for sample 

two (just calculated) plus the phase differenced between “wrapped” sample three and 

“wrapped” sample two.  This procedure continues until all the phase terms are 

“unwrapped” over the entire sampling angle. 

2.2.3 Solving for scattering center coordinates 

Multiple phase measurements and the associated angular positions can be represented 

as an “unwrapped” phase vector (Φunwrapped) at a vector of known positions (φ).  With 

“unwrapped” phase known, these vectors are related to the relative scattering center 

coordinates ∆x and ∆y by 

 φφ sincos yxunwrapped ∆−∆=Φ . (2-4)
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Figure 3. Two difficult cases for “unwrapping” phase.  Here ∆φmin is the minimum 
sampling interval needed to unambiguously “unwrap” the phase between two scattering 
centers, where the total phase change must be no greater than one half wavelength.  The 
maximum length of the target forms the hypotenuse of a right triangle, and the maximum 
length of the target minus one forms the long leg of this triangle, where all lengths are 
expressed in half wavelengths.  The expression to be minimized is an inverse cosine, and 
the worst case is when the distance between scattering centers is a maximum and the 
position vector from one scattering center to the other is parallel to the look angle.  The 
diagram on the right shows the only case where the phase difference between two 
scattering centers changes sign from one sample to the next. 

 

Solving (2-4) for the unknown vector [∆x ∆y]T yields the overdetermined system 
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If A is the full rank matrix of sines and cosines above (the nonlinear behavior of the 

sine and cosine should ensure A is full rank), then the least squares solution is obtained 

by multiplying both sides of Equation (2-5) by AT from the left and solving the resulting 

two equations in two unknowns for  [∆x ∆y]T.  Also note that for the classifier designed 

here or any classifier that uses geometric features, the phase terms (and the resulting 

coordinates) are sufficient, and the amplitude of each scattering center is not 

characterized.  

The above algorithm determines the separation between the reference scattering 

center (the highest intensity one) already mapped to the origin and the next highest 

intensity scattering center.  The original spatial frequency spectrum is used to determine 

the separation between the reference scattering center and each successive scattering 

center until a sufficient amount of the radar energy is modeled. 

Sampling along the φ direction determines the scattering center coordinates in the x-y 

plane, but rotation around the z-axis does not resolve separation in the z dimension.  

Thus, the above steps are repeated while sampling in the θ direction to determine the ∆x 

and ∆z coordinates.  The  ∆x coordinates are already calculated, so consistency may be 

verified. 

2.3 Algorithm validation and test 

To validate the extraction algorithm, a five-point object in three dimensions is 

generated from a uniform distribution in a 30-meter cube consistent with the assumptions 

of Section 2.2.  The complex radar return is calculated from Equations (2-1) and (2-2) 

using eleven samples of φ from 0° to 1° in 0.1° increments and using unit amplitudes An 
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and zero damping coefficients γ' and γ".  The phase differences “wrapped” between one 

scattering center and the other four scattering centers are extracted from the spatial 

frequency spectrum by calculating distances from one impulse to the next. 

Equation (2-3) gives the minimum sampling interval for this test as 0.0326°.  

Although the data is not sampled finely enough, some properties of the collection 

geometry may be used to obtain better results.  Figure 4 shows that if the collection 

geometry does not include a broadside case between any two scattering centers, the 

“unwrapped” phase must be monotonically increasing or decreasing.  Thus, there are two 

competing hypotheses: the phase differences lie in either the interval from 0 up to 2π or 

the interval from 0 down to -2π.  After performing the least squares fit to solve Equation 

(2-5) using both assumptions, only the valid hypothesis fits the model (see Figure 4). 

In the test it is not possible to unambiguously unwrap phase due to the overly large 

sampling interval on the viewing sphere.  However, by testing the hypotheses that the 

phase is monotonically decreasing or increasing, it is possible to reject the incorrect 

hypothesis, to recover the separation of the scattering centers, and to correctly unwrap the 

phase.  The [∆x  ∆y]T has the lowest mean squared error between the hypothesized phase 

vector and that calculated in Equation (2-5).  This technique effectively increases the 

minimum sampling interval by a factor of two, but fails to correctly unwrap phase when 

one of the samples is broadside to two scattering centers (see Figure 3). 

To account for this rare possibility, a number of hypotheses equal to twice the number 

of samples may be tested to determine the scattering center separation by locating the 

sample at which phase difference changes sign.  This procedure requires solving for a 
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Figure 4. Unwrapping phase between two scattering centers on a larger object.  
random object is constrained to lie in a 30-meter cube, which corresponds to a 2,000 
2,000 x 2,000 half wavelength space.  The graph shows the “unwrapped” phase of tw
possible solutions given monotonically increasing or monotonically decreasing phase
terms.  Only one solution models the actual data and recovers the separation between
two chosen scattering centers. 

 

number of  [∆x  ∆y]T vectors equal to two times the number of samples and assuming

there is exactly one sign change in the phase difference vector.  Once again the correc

[∆x  ∆y]T vector is the one with lowest mean squared error between the hypothesized

phase vector and that calculated from a least squares solution of Equation (2-5).  Thu

using the algorithm detailed in Section 2.2, the scattering center coordinates of a rand

object are completely extracted, even though the sampling interval is over three times

minimum sampling interval needed to guarantee unambiguous phase “unwrapping”. 
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broadside case exists in the collection geometry, so only two competing hypotheses 

require testing for each scattering center coordinate. 

2.4 Implementation 

Here three-dimensional reconstruction has been treated as two two-dimensional 

reconstructions.  This treatment requires only one-dimensional (instead of two-

dimensional) Fourier transforms.  Experiments to validate the algorithm used N samples 

on the viewing sphere in one direction to solve for scattering center coordinates [17].  A 

three-dimensional reconstruction at the equivalent sampling interval would use N2 

samples on the viewing sphere to obtain a much higher ratio of equations (samples) to 

unknowns, and it would not solve twice for the same coordinate (∆x in the sample 

collection geometry used here). 

An ambitious plan to apply this algorithm (later used in Section 4.3) would build one 

large target model valid over all possible angles on the viewing sphere.  Scattering 

centers would have associated two-dimensional rectangular window functions that would 

model the persistence of each scattering center.  At any point on the viewing sphere a set 

of scattering center coordinates describing the object could be easily obtained.  Any 

unknown target sampled over a subset of the total viewing sphere could be compared to 

existing models of valid targets, and the best match in three-dimensional shape could be 

determined (ideally with associated confidence measures). 
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2.5 Impact on classifier design 

Given complete knowledge of any target selected for a three-dimensional classifier, 

there is now an effective and efficient way to populate a target database with target 

models to be implemented in Chapter 4. 

Commercial ray-tracing algorithms such as XPATCH can calculate the complex radar 

return from a CAD model of a known target [60].  After the CAD models are imported to 

the ray-tracing algorithm, the location of a radar transmitter (in aspect angle, elevation 

angle, and distance) is specified along with the parameters of the radar (center frequency, 

number of frequency steps, etc.).  The algorithm solves Maxwell’s equations at object 

boundaries to determine the energy collected at a receiver at a specified location (in 

aspect angle, elevation angle, and distance).  Ray-tracing algorithms often have the 

ability to extract the scattering center representation of an object that generates the radar 

image (commonly represented as a Video Phase History), but they do not extract the most 

stable scattering centers as a function of aspect angle, only the high-intensity ones.  Thus 

these scattering center representations are far from robust, and break down trying to 

model the simplest of targets (e.g., a few corner reflectors). 

If such ray-tracing algorithms are optimized to extract rigid three-dimensional 

scattering centers, a complete database of models can be built entirely on high-speed 

computers.  Alternatively, inexpensive small-scale models of known targets can be built 

and placed on a compact radar range (using miniaturized targets and reduced radar 

wavelengths).  The complex radar returns from an experiment where the small-scale 

model is rotated and possibly tilted would allow the extraction algorithm to build a model 
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for a database of known targets.  Either of these two methods constructs “cloud of points” 

target models efficiently and justifies the design of a three-dimensional classifier.
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3 Singular Value Features 
 

Appendix 2 examines using Procrustes distance as a metric for classifying targets 

modeled by sets of scattering centers.  Although Procrustes distance is invariant to 

translation, rotation, and scale, matching objects with unequal numbers of scattering 

centers is problematic.  This chapter considers singular value features, which avoid this 

matching problem but have the desired invariance properties. 

3.1 Definition of singular values 

Eigenvectors and eigenvalues that describe coordinate rotations and scalings, 

respectively, can be obtained for square matrices.  For non-square matrices Singular 

Value Decomposition (SVD) may be employed for these descriptions.  Given an m x n 

matrix A with m ≥ n, SVD extracts unitary matrices Umxm and Vnxn and diagonal matrix 

Smxn (at least the top n rows of Smxn form a diagonal matrix) such that AHV = UHS, where 

the top n rows of Smxn have the n singular values of matrix A on its diagonal (most SVD 

algorithms order the singular values from largest to smallest) and where H designates 

complex conjugate transpose.  If matrix A represents m ≥ n  points in an n-dimensional 

space, the n singular values are the lengths of the n semi-axes of an n-dimensional 

ellipsoid.  This ellipsoid defines the one standard deviation contour of a zero-mean 

Gaussian probability density of covariance matrix A.  This covariance matrix is 

-1m A0
HA0, where A0 is A with the mean of each column subtracted from the elements of 

that column and where the singular values are the square roots of the eigenvalues of the 

covariance matrix. 
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3.2 Invariance of singular values 

Any translation or rotation of the set of points represented by matrix A does not 

change the length of the semi-axes of the n-dimensional ellipsoid discussed previously.  

However, any scaling (i.e., multiplication of each coordinate by the same constant) of 

these points scales the n lengths of the semi-axes by the same constant.  Thus, singular 

value features are invariant to translation and rotation of the original matrix but preserve 

scaling. 

Given a three-dimensional object matrix Anx3, the three singular values of the matrix 

roughly correspond to half the length, half the width, and half the height of the object.  

These three singular values may therefore be suitable features for target identification. 

3.3 Monomial expansion of object matrix 

Methods for obtaining higher order expansions of the object matrix are desired, since 

the singular values of such expansions define the object matrix more completely than the 

original three singular values.  In particular, a large number of singular values contains 

the same information as the original x, y, and z values of the original object matrix. 

A monomial expansion is similar to a binomial expansion, except the numerical 

coefficients of the terms are unimportant.  If each row (i.e., each scattering center point) 

of an N x 6 object matrix is represented as [xn yn zn], then each row of the second order 

monomial expansion of the object matrix is  [xn
2 yn

2 zn
2 xnyn   xnzn   ynzn].  If the 

coordinates of the object matrix are converted to zero mean, the first and last three 

columns of this second order monomial expansion are related to coordinate variances and 
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covariances, respectively.  The six singular values of this N x 6 matrix provide additional 

information about the object. 

Further monomial expansions of the object matrix improve the representation.  Just as 

skew and kurtosis provide more information (related to the third and fourth moments of a 

probability distribution), further expansions of the object matrix provide more 

information about the original object.  However, if each coordinate consists of a 

deterministic value and a noise component, the higher the order of the monomial 

expansion, the higher the noise content of each element in the expanded matrix.  In the 

following, a simulation shows that the 19 singular values of the first, second, and third 

monomial expansions of the object matrix are sufficient to achieve adequate 

classification performance. 

3.4 Determining the feature set 

To select a suitable feature set, a group of ten simple ten-point objects is created from 

three coordinates distributed independently and uniformly from zero to one meters, and 

simple Euclidean classifiers are tested based on the singular values of monomial 

expansions of increasing order.  For example, the simplest feature set is the three-

dimensional vector composed of the three singular values of each object matrix, and a 

simple Euclidean distance classifier matches the three singular values of any unknown 

object to the closest singular values of a known object.  The next higher-order feature set 

is the nine-dimensional vector consisting of the last feature set augmented by the six 

singular values of the second order monomial expansion of this matrix. 
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All singular value classifiers are compared to a benchmark classifier that treats every 

coordinate in the object matrix as a feature.  This thirty-dimensional feature set contains 

an exact representation of each object.  As successive classifiers add more singular 

values, classifier performance improves, but there is a limit where added features 

contribute little to classifier performance. 

Since there is only one example of each object, each classifier is tested using a Monte 

Carlo method in which equal numbers of each of the original ten objects have white noise 

added to the ten points.  Noise variance is successively increased to degrade classifier 

performance, and any unknown (noise-corrupted) target is matched to the known (noise-

free) target closest in Euclidean distance in the feature space.  Under ideal conditions (no 

noise), the classifier correctly classifies every target (since without noise there are no 

unknown targets).  For high noise levels, classification performance tends to 10% (that of 

a random guess).  Figure 5 shows how each classifier compares to the benchmark 

classifier that uses the coordinates of each of the ten object points as features.  For the 

ten-point objects, the correct-classification performance of a classifier that uses only the 

first three singular values is about 60% that of the benchmark classifier for a noise 

standard deviation of 0.5m.  Using six singular values yields about 90% of the 

performance of the benchmark classifier for this noise standard deviation, and using ten 

singular values improves performance to over 98% that of the benchmark classifier.  

Thus, for this example, augmenting the feature space by generating further higher order 

monomial expansions is unnecessary. 
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Figure 5. The significance of features from successive monomial expansions.  Here 
ten three-dimensional objects, each composed of ten points, are created such that each 
coordinate is uniformly distributed between zero and one meter.   The objects are then 
subjected to noise, where the noise standard deviation is that of white Gaussian noise 
added independently to each coordinate.   Four nearest-Euclidean-distance classifiers of 
different complexity are tested: a classifier that uses all elements of the ten by three 
object matrix, a classifier that uses only the three singular values of each ten by three 
object matrix, a classifier that uses the three singular values from the ten by three object 
matrix plus the six singular values of its second order monomial expansion, and a 
classifier that uses the three singular values of the object matrix and both the six singular 
values of its second order monomial expansions and the ten singular values of the third 
order monomial expansion.  The latter classifier has a 97% probability of correctly 
identifying an unknown target at an intermediate noise level (0.5m standard deviation) 
compared to 98% for the benchmark classifier that uses all information about the object 
(i.e., the coordinates of the ten points).  Thus further monomial expansions are 
unnecessary. 
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Similar tests that used a view of each of eight military objects with additive zero-

mean white Gaussian noise produced similar results.  In particular, the probability of 

correct classification appreciably increases until the feature set includes the singular 

values of the target matrix and its second and third order monomial expansions.  

However, adding the singular values of the fourth order monomial expansion 

significantly increases the dimensionality of the feature space with only a slight 

improvement in classifier performance. 

3.5 Feature set definition 

Section 3.4 indicates that a nineteen-dimensional vector calculated from the singular 

values of the target matrix and its first two monomial expansions (the second and third 

order expansions) should contain adequate information for effective classification.  For 

complicated objects (objects with large numbers of scattering center points), the 

performance of classifiers that use this feature vector should decrease.  Anecdotal 

evidence suggests that certain scattering centers are more persistent as a function of 

aspect angle than others [53].  Thus, if the ten scattering centers that persist for the widest 

range of aspect angles are extracted from a much larger set, and if the remaining 

scattering centers are not nearly as persistent, then the performance of a classifier using 

the nineteen-dimensional vector should be close to that of a classifier using all 

coordinates. 

In this dissertation, the nineteen-dimensional feature vector is chosen to represent 

diverse military targets (see Figure 6).  The elements of the feature vector are the singular 

values of the object matrix augmented with the singular values of its second and third 
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order monomial expansions and ordered from largest to smallest.  This feature vector is 

independent of translation and rotation of the original object matrix.  If the object matrix 

is scaled by k, the elements of the feature vector are scaled by k, k2, or k3 depending on 

their associated monomial expansion.  Thus, this feature vector preserves scaling and can 

discriminate between objects of different physical size.  Because the size of the target in 

the SAR image is independent of the distance from the target to the SAR sensor, this 

preservation of size is advantageous (which would not be the case for an optical system 

where size and distance to the target are related and invariance to scale may be desired) 

[50].  

Concatenating the singular values of three matrices forms the selected feature vector, 

but concatenating the three monomial expansion matrices first and then finding the 

singular values of this single nineteen-column matrix forms an alternative feature vector.  

This feature vector is not invariant to translation and rotation of the original object matrix 

and is not considered here. 

The chosen feature vector is not only independent of translation and rotation of the 

object matrix, but also, by construction, guarantees perfect correspondence between 

feature vectors from object matrices with different numbers of points.  Perfect 

correspondence means that every object can be described by exactly nineteen singular 

values regardless of the number of scattering center points (typically thousands).
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4 Classifier Design 

 
The three-dimensional scattering centers of a target generated from raw SAR data can 

be represented in a nineteen-dimensional feature space.  The development of an effective 

algorithm to classify targets in this nineteen-dimensional feature space is explored in this 

chapter.  Understanding how this classifier functions is important because scattering 

center extraction has heretofore emphasized image compression, which may not be 

appropriate for SAR target classification. 

4.1 Classifier design and compromises 

The problem addressed here requires the correct identification of a set of eight targets.  

An ideal target might consist of a collection of scattering centers that exhibit constant 

reflection at all aspect angles and that are of sufficient number to provide a unique and 

complete object description.  However, here eight challenging military targets and their 

associated scattering centers form the target set for a classifier that address a “real world” 

problem. 

Existing classifiers treat each view of a target as an independent observation.  Each 

SAR image has a time series of associated aspect angles, and regarding this series as the 

result of a known rotation makes use of a priori information that improves classifier 

performance. 

4.2 Scattering center stability 

Current ray-tracing algorithms are not capable of extracting scattering centers that are 

stable beyond three degrees, where a scattering center (in a target-centered frame of 
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reference) is stable if it is completely visible over a specified range of aspect angles.  

However, with the 3D MAGI algorithm described in Section 1.2, scattering centers from 

SAR returns that are stable over twenty degrees of aspect angle may be extracted.  These 

scattering centers behave as corner reflectors with a two-dimensional damped sinusoid 

amplitude profile [13] described by Equation .  It is not necessary to know the five 

parameters for each scattering center, i.e., maximum amplitude (An), location of the 

maximum amplitude in phi and theta ( 'θ n, 'φ n), and damping rates in phi and theta 

(2-1)

( , ).  Extracting only the three-dimensional location (x'
nγ

''
nγ n, yn, zn) of each scattering 

center of the target is necessary. 

The stability of the scattering centers is more important than their intensity 

(proportional to energy) when extracting scattering centers from SAR images of real 

objects and CAD models.  For the singular value features used here (and any other 

geometric features), the intensity of the scattering centers is ignored.   

4.3 Target models 

Here eight vehicle targets of military interest (see Figure 6), the Russian SA-8 

surface-to-air missile battery, the Russian SA-13 surface-to-air missile battery, the 

Russian T-72 main battle tank, the Russian T-62 tank, the US M-1 Abrams main battle 

tank, the US M-60 tank, the US M-113 armored personnel carrier, and the US M-911 ten-

ton truck, are input to XPATCH software, which is commonly used ray-tracing algorithm 

that calculates scattering center locations [60].  However, each scattering center is 

constrained to function as a corner reflector modeled by Equation (2-1).  Although the 

model is valid for targets over the entire viewing sphere, the elevation angle is assumed  
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Figure 6. Eight military vehicles used as targets in the singular value monomial 
expansion classifier.  They are from left to right and top to bottom: the Russian SA-8 
surface-to-air missile battery, the Russian SA-13 surface-to-air missile battery, the 
Russian T-72 main battle tank, the Russian T-62 tank, the US M-1 Abrams main battle 
tank, the US M-60 tank, the US M-113 armored personnel carrier, and the US M911 ten-
ton truck. 
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fixed at just above zero degrees, since the data are for ranges of more than 10 nautical 

miles. 

Exhaustive XPATCH runs generate discrete target representations every tenth of a 

degree in azimuth, where all scattering centers are constrained to persist for twenty 

degrees of azimuth angle.  This modification to XPATCH allows for anticipated 

improvements in scattering center models that future algorithms such as 3D MAGI are 

expected to provide.  A single four-column matrix describes each target: the first three 

columns are three-dimensional points that indicate all visible scattering centers, and the 

last column is the azimuth angle of the center of each scattering center “window”.  Any 

scattering center at an azimuth angle within ten degrees of the center of a scattering 

center “window” is visible. 

4.4 Singular value feature extraction 

Each view of a target is modeled as a set of scattering centers, and features for 

classifier design are selected from these sets.  As discussed in Section 3.3, a monomial 

expansion of the target matrix generates higher order moments (see Figure 7).  If the 

singular values of these expanded matrices are used to augment the feature space, 

additional information about the targets is obtained.  As indicated in Section 3.4 for 

simple ten-point objects, the singular values of the target matrix and its first two 

monomial expansions form a nineteen-dimensional feature vector that functions almost as 

well as the scattering center coordinates.  For real targets there may be one thousand or 

more scattering centers. 
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Figure 7. Monomial expansions of the target matrix.  There are three singular values 
from the target matrix, an additional six singular values from the target matrix augmented 
with its second order monomial expansion, and an additional ten singular values from the 
target matrix augmented with its second and third order monomial expansions.  The 
nineteen singular values of all these matrices form a nineteen-dimensional feature space. 
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4.5 Creating target subclasses 

Each target is divided into subclasses in the feature space.  The closeness of two 

aspect angles is related to the correlation of the associated sets of scattering centers.  

Since all scattering centers persist over twenty degrees of aspect angle by construction, 

two aspect-angle views separated by twenty degrees are completely uncorrelated.  

However, any aspect-angle view between these two views must consist only of scattering 

centers from these two views.  A view exactly halfway between these views is expected 

to contain half of the scattering centers from one view and half of the scattering centers 

from the other view.  Also, for any arbitrary aspect angle between the two views, the 

expected number of scattering centers from each of the two views can be calculated: the 

distance from the arbitrary aspect angle to each view divided by twenty degrees is 

approximately the fraction of scattering centers that should be visible (see Figure 8).  

Thus the 360° range of aspect angle is separated into 36 subclasses, each of which 

represent models generated over ten degrees of aspect angle.  This separation ensures that 

the correlation between the scattering centers of any two aspect-angle views in the same 

subclass is at least 50% (see Figure 9).  The 360° range of aspect angles is sampled every 

tenth of a degree to generate a population from which to calculate results. 

4.6 Classifier training 

There are 100 target models of each of 36 subclasses, and 5% of these models are 

withheld for later classifier testing.  The nineteen-dimensional feature vector for each of  
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Figure 8. Plot of visible scattering centers as a function of aspect angle.  Each target 
has 1234 visible scattering centers at zero degrees and 1144 visible scattering centers at 
twenty degrees.  Note that the number of visible scattering centers as a function of aspect 
angle has the expected linear trend. 

 

Figure 9. Correlation as a function of aspect angle.  The graph shows the correlation 
between any two sets of aspect angle views of the same target as a function of difference 
in aspect angle.  Since views separated by more than twenty degrees are uncorrelated, the 
360° range of aspect angles may be separated into 10° subclasses, in which case the 
correlation between any two aspect angles is no greater than 0.50. 
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the 95 remaining models is calculated.  From these 95 vectors, a mean vector and a 

covariance matrix are determined for each subclass of each target. 

If the feature vector of each subclass is normally distributed, its distribution is 

completely described by a length nineteen mean vector and a nineteen by nineteen 

covariance matrix.  The improved stability (persistence) of the scattering centers (up to 

20 degrees) enables a higher correlation within subclasses that has been previously 

unachievable, and thus each subclass is reduced to a mean vector and a covariance matrix 

as shown in Figure 10.  The resulting data compression is remarkable: each subclass that 

originally consisted of one hundred radar images (each about 12 megabytes) is now 

represented by only 209 numbers (19 mean vector elements plus 190 independent 

elements in the covariance matrix) that take about 800 bytes to store as double precision 

variables. 

4.7 Decision Making 

After characterizing all known targets as nineteen-dimensional Gaussians, a decision 

rule for classifying any unknown set of scattering centers is needed.  The unknown set 

must be reduced to a nineteen-dimensional vector by taking the singular values of the 

target matrix and its monomial expansions.  Rather than classifying this unknown vector 

x by finding the closest subclass mean µ in Euclidean distance, it is classified by finding 

the closest subclass mean in Mahalanobis distance r.  The square of this distance is  

 )()( 12 µµ −∑−= − xxr T , (4-1)
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Figure 10. Data compression illustration.  Each subclass originates from one hundred 
radar images (one image every tenth-degree in azimuth, with each subclasses 
encompassing ten degrees).  A scattering center extraction algorithm that finds 1000 
scattering centers reduces this data to one hundred 1000 by three matrices.  A nineteen 
dimensional vector of singular values in the feature space represents each of these 
matrices, and finally, all one hundred nineteen-dimensional vectors are represented as a 
nineteen-dimension mean vector and a symmetric nineteen by nineteen covariance 
matrix.  Thus, about one gigabyte of data is reduced to about 800 bytes.  (Here the SAR 
image is not of a military target, but a car at a high elevation angle.)  
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where Σ is the class covariance matrix.  Thus r2 is squared Euclidean distance weighted 

by the inverse of the covariance matrix, where this matrix is normalized (divided by its 

determinant) to avoid scaling problems.  Mahalanobis distance is used because it 

measures the number of standard deviations in the desired direction to account for the 

hyper-elllipsoid profile of the probability density associated with each class. 

The decision rule takes any unknown feature vector and classifies it as one of the 

eight known targets.  However, this procedure does not reject clutter or targets that are 

not in the database, so another rule to reject false targets is required.  For each subclass, 

the Mahalanobis distance to all subclasses for a different target is calculated.  The 

smallest of these distances is an estimate of a threshold that, when exceeded, indicates 

that the unknown vector is likely not associated with any of the known targets in the 

database.  The decision process is shown as a flowchart in Figure 11. 

There is a single conditional decision rule: an unknown vector is matched to the target 

of the associated subclass nearest to the unknown in Mahalanobis distance, provided this 

distance does not exceed the distance from the associated subclass to the nearest subclass 

of any different target, in which case it is a non-target (e.g., clutter).  This proposed 

clutter threshold is a worst-case limit; Section 7.2.3 discusses improved decision-making 

procedures.  Figure 12 is two-dimensional illustration in which the unknown is a single 

standard deviation from Target 1 View 3, four standard deviations from Target 1 View 

14, and six standard deviations from Target 4 View 7.  Therefore, the unknown is 

matched to Target 1 View 3.  The clutter threshold is the distance to the closest view of a 
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different target: approximately four standard deviations in this example (the distance 

from the mean of Target 1 View 3 to the mean of Target 4 View7). 

 

Figure 11. Flowchart of the classifier decision process.  First, scattering centers are 
extracted from the radar image.  Next, the Mahalanobis distance of a SVD feature set for 
an unknown target is found to the closest subclass means in the target database.  Finally, 
if this distance is less than the clutter threshold, a valid target is declared. 
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Figure 12. Example of decision and clutter thresholds.  An unknown target point (X) 
and the three closest subclass mean points (o’s) are shown, where to enable illustration 
the points have two dimensions instead of nineteen dimensions.  The subclass ellipses 
indicate lines of equal probability density for the covariance matrix of the indicated view 
of each target and represent integer multiples of one standard deviation.  Any unknown 
point is matched to the nearest subclass using Mahalanobis distance, i.e., Euclidean 
distance after the nineteen coordinate axes are rotated and scaled so that the subclass 
covariance matrix is the unit matrix.  If this distance is greater than the Mahalanobis 
distance to the closest subclass belonging to a different target, target identification is 
unreliable. 
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5 Classifier Test 
 

The best test of a classifier is its performance in classifying new (not used in training) 

images of both targets and “confusers”, where the latter are objects that differ materially 

(i.e., by more than added noise) from any target.  However, only different aspect angles 

of each target and not different obscurations, clutter background, etc., are available.  

Nevertheless, there are established methods for replicating “real world” conditions that 

degrade the original target images. 

5.1 Replicating “real world” conditions 

To replicate “real world” conditions and exhaustively test the classifier, both white 

noise and obscuration masks are added to the sets of scattering centers withheld for 

testing.  White noise models the sum of many random variables, and an obscuration mask 

removes three-dimensional scattering centers from the target model in blocks (which 

simulates placing the target behind objects such as trees or partially covering the target 

with non-reflective tarpaulins). 

White noise is added to the target with variances up to those of the target coordinates.  

Obscuration filters are added that mask 0% to 60% of the scattering centers of the target 

along an arbitrary coordinate axis and at an arbitrary position on the target.  Specifically, 

an equal number of each set of target views is sorted in increasing order for each of the 

three coordinates of the scattering centers (a third are sorted by x, a third are sorted by y, 

and a third are sorted by z).  At a random position along each realization of a particular 

target view, a continuous block of scattering centers is removed.  For example, if a target 

view has 1,000 scattering centers and an obscuration level of 20% is desired, 200 
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consecutive scattering centers are deleted starting with anywhere from the 1st to the 801st 

scattering center. 

5.2 Calculating confusion matrices 

After degrading the withheld test data, Monte Carlo experiments are performed. The 

subclasses to which the withheld data is matched using Mahalanobis distance are 

calculated, and the performance of the classifier is assessed using confusion matrices 

[18].  

A single 288 by 288 matrix describes all test data (degraded by noise or obscuration 

for input to the Mahalanobis distance classifier), since eight targets are separated into 

thirty-six subclasses for a total of 288 subclasses.  Each element in this confusion matrix 

has the number of classified test instances for which its row-classified target is its column 

actual target.  For example, if element (5, 8) of the confusion matrix is three, then for all 

test instances originally in subclass 5 after being subjected to a set of “real world” 

conditions, three instances are identified as matching subclass 8 the best.  The more 

diagonal the confusion matrix, the better the classifier performance, since each off-

diagonal term represents incorrect identification. 

A confusion matrix with all 288 subclasses is of limited interest, since only 

identifying the correct target, and not its aspect angle, is necessary.   Thus, the 288 by 

288 confusion matrix is reduced to a more tractable eight by eight confusion matrix by 

summing all 64 of the 36 by 36 submatrices (see Tables 2 through 5).  The only 

information lost in this process is the aspect-angle view of the target under “real world” 

conditions and the aspect-angle view of the target to which it is matched. 
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Table 2. Confusion Matrix for 10% Obscuration 
 1 2 3 4 5 6 7 8
1 172 0 0 0 8 0 0 0
2 0 179 1 0 0 0 0 0
3 0 3 175 0 0 0 0 2
4 0 0 0 180 0 0 0 0
5 0 0 0 0 180 0 0 0
6 0 0 0 0 0 180 0 0
7 0 0 0 0 0 0 180 0
8 0 0 0 0 0 0 0 180

 

Table 3. Confusion Matrix for 15% Obscuration 
 1 2 3 4 5 6 7 8
1 156 0 0 0 23 0 1 0
2 0 172 7 0 1 0 0 0
3 0 3 170 0 1 0 0 6
4 0 0 0 180 0 0 0 0
5 0 0 0 0 180 0 0 0
6 0 0 0 0 0 180 0 0
7 0 0 2 0 0 0 178 0
8 0 2 0 0 1 0 0 177
 

Table 4. Confusion Matrix for 25% Obscuration 
 1 2 3 4 5 6 7 8
1 97 0 10 0 71 2 0 0
2 1 137 22 0 8 6 1 5
3 0 31 128 0 11 5 0 5
4 0 0 0 180 0 0 0 0
5 0 7 8 0 163 2 0 0
6 0 0 0 0 0 180 0 0
7 2 16 40 0 10 0 87 25
8 0 23 7 0 6 1 6 137
 

Table 5. Confusion Matrix for 40% Obscuration 
 1 2 3 4 5 6 7 8
1 62 1 22 0 47 35 13 0
2 4 85 34 0 13 10 4 30
3 1 43 91 0 8 34 0 3
4 0 0 0 180 0 0 0 0
5 0 59 20 0 55 46 0 0
6 0 0 0 0 0 180 0 0
7 13 21 89 0 21 7 16 13
8 0 70 32 0 5 8 3 62
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5.3 Calculating figures of merit 

From each confusion matrix a probability of correct identification (PCID) and a 

probability of false identification (PFID) for each target is calculated. 

The PCID for each target is found from the eight rows of the confusion matrix.  The 

sum of the elements in a particular row represents all instances of a single target subject 

to “real world” conditions, and the column of each row element indicates how many 

times this target is matched to each of the eight targets.  The diagonal element represents 

a correct identification, so the PCID is defined as the diagonal element divided by the 

sum of the row elements. 

The sum of the elements in a particular column represents all instances in which any 

target subject to “real world” conditions is identified as a particular target.  All off-

diagonal elements in the column represent false identification, so the PFID is defined as 

the sum of all diagonal elements divided by the sum of the column elements. 

A particular set of “real world” conditions generates a single confusion matrix, and 

from this confusion matrix a PCID and PFID are calculated for each of eight targets.  A 

single parameter (noise power or obscuration level) is varied to generate multiple 

confusion matrices.  Converting each confusion matrix into eight PCIDs and eight PFIDs 

allows the production of graphs of PCID and PFID versus the parameter for each target.  

Such graphs are displayed in Figures 13 to 16. 
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5.4 Test results 

Adding white noise of variance up to the variance of the test data [Signal to Noise 

Ratio (SNR) = 1 = 0 dB] to the data withheld for testing does not adversely affect 

classifier performance because the subclass confusion matrix remains diagonal.  Not only 

are all targets correctly identified.  Also, each Mahalanobis distance from test data with 

added noise of SNR = 0 dB to the correct subclass is less than one ten thousandth of the 

clutter rejection threshold. 

However, obscuring the test data quickly degrades classifier performance as shown in 

Figures 13 to 16.  With one exception, when the test data is obscured by 15%, the PCID 

for all targets is greater than 95% and the PFID for all targets is less than 5%.  With the 

same exception, when the test data is obscured by 20%, the PCID for all targets is greater 

than 80% and the PFID for all targets is less than 20%.  In summary, when 20% of the 

test targets are obscured, the classifier still correctly classifies over four out of five cases. 

5.5 Comparisons with existing classifiers 

The Mahalanobis distance classifier using singular value features shows significant 

immunity to white noise.  For targets subject to obscurations of up to 20%, the classifier 

performance degrades, but it is still acceptable.  An existing two-dimensional classifier 

has difficulty identifying targets that are only 10% obscured, and it requires over fifty 

times the memory to store each target and over sixty five times as much computer 

processor time to make a single comparison as the classifier proposed here [53].  These 

dramatic improvements can be attributed in part to more stable scattering centers and the 

data compression enabled by this stability. 
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Figure 13. Plot of Probability of Correct Identification (PCID) and Probability of 
False Identification (PFID) as a function of obscuration level for targets 1 & 2.  In this 
figure and the following three figures, the confusion matrices for nine obscuration levels 
are used to form nine data points on a graph which shows the probability that an obscured 
version of each target is correctly identified for a particular obscuration level (PCID).  
Also shown is the probability that an obscured version of another target is misidentified 
as each of eight targets (PFID).  
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Figure 14. Plot of PCID and PFID as a function of obscuration level for targets 3 & 4. 
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Figure 15. Plot of PCID and PFID as a function of obscuration level for targets 5 & 6. 
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Figure 16. Plot of PCID and PFID as a function of obscuration level for targets 7 & 8. 
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6 Contributions 
 

This section summarizes contributions of the research reported here, beginning with 

valuable results not used in the final classifier design and ending with a general purpose 

"recipe" that characterizes this design.  

In the pursuit of a classifier that uses invariant features, valuable information about 

the relationship between sensor resolution and target identification performance as well 

as the relationship between Procrustes distance and Kendall shape space was obtained as 

described in Appendices 1 and 2.  This information is not directly related to the singular 

value feature classifier described and evaluated in Chapters 3 through 5. 

Two contributions in the extraction of scattering centers make the design of an 

invariant three-dimensional classifier practical: the iterative model-building algorithm 

described in Chapter 2 and the modification of existing commercial software (XPATCH) 

to extract scattering center models consistent with future capabilities (e.g., 3D MAGI) 

described in Section 4.3.  An efficient model-building algorithm allows a database of 

targets for the classifier to be constructed with minimal time and cost.  The modification 

of existing commercial software enables rapid testing of the classifier using existing 

scattering center models. 

The primary contribution is a method for classifying targets (including military 

targets) using invariant features.  This method chooses a space that is independent of any 

translation or rotation of the target and that is also independent of the number of 

scattering centers that characterize the target.  The classifier compresses the input data by 
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factor of ten million to one, identifies targets correctly in realistic noise environments, 

and performs acceptably when targets are obscured. 

An algorithm that classifies any object which can be represented as a “cloud of 

points” has applications beyond the field of ATR.  Although the algorithm is used here to 

identify military targets from scattering center models of radar targets, it may be extended 

to more generic classification problems.  The following “recipe” reviews the steps 

involved in the algorithm. 

6.1 Extract “cloud of points” model 

Extract the three-dimensional coordinates of all the points necessary to represent each 

object as series of aspect-angle views.  Specifically, let the total number of points needed 

to represent each aspect-angle view be N and represent each aspect-angle view by an N x 

3 matrix, where the columns are the x, y, and z coordinates. 

In the radar classification example, three-dimensional scattering centers are extracted 

every tenth of a degree in aspect angle for each of eight military targets.  A modified 

version of XPATCH is used to extract scattering centers from existing target models, 

where the scattering centers are constrained to persist for twenty degrees of aspect angle. 

6.2 Generate singular value features 

Convert each aspect angle view into a vector of nineteen singular value features.  

Specifically, find the singular values of the original N x 3 matrix after the means are 

subtracted from each column.  Then find the six singular values of the N x 6 matrix with 

zero-mean columns x2, y2, z2, xy, xz, and yz, and find the ten singular values of the N x 
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10 matrix with zero-mean columns x3, y3, z3, x2y, x2z, xy2, xz2, yz2, y2z, and xyz.  Finally, 

concatenate all singular values into one length-nineteen feature vector. 

6.3 Characterize aspect-angle subclasses 

Divide the series of aspect angle views for each object into multiple subclasses, where 

each subclass has as many common points as possible (this commonality is necessary to 

model the obscuration of points as an object rotates).  Withhold 5% of the aspect-angle 

views, uniformly distributed throughout the subclass, for later testing.  Find the mean and 

covariance matrix of the remaining 95% of the aspect-angle views. 

In the radar classification example, aspect-angle views at 1.0, 3.0, 5.0, 7.0, and 9.0 

degrees within each 10-degree-wide subclass are withheld, and a mean and covariance 

matrix are found for the 95 remaining aspect-angle views. 

6.4 Find clutter threshold and classify test points 

Find the Mahalanobis distance from each subclass mean to the closest subclass mean 

of a different target.  Declare this distance to be the clutter threshold, i.e., any unknown is 

declared a non-target if the Mahalanobis distance to the closest subclass exceeds this 

threshold. 

Classify test points with white zero-mean Gaussian noise added to the coordinates of 

the N x 3 object matrix with noise variance up to that of the variance of the coordinates 

themselves (this maximum models a signal to noise ratio of 1). 

Classify test points after obscuring the object matrices up to 60% by removing 

continuous, randomly located and randomly directed blocks of coordinates from the 
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object matrix.  Specifically, order the object points by each of the three coordinates and 

remove a block of points starting at an arbitrary row in the object matrix. 

6.5 Generate confusion matrices 

Let the row index describe the actual subclass in which the test data belongs and the 

column index describes the subclass in which the test data is classified. 

Generate a square confusion matrix that describes test data classification for each 

noise level and each obscuration level. Reduce this confusion matrix to a smaller matrix 

that shows how each target is classified independent of aspect-angle subclass.  In the 

radar classification example, the original 288 by 288 (36 subclasses for each of 8 targets) 

confusion matrix is reduced further to an 8 by 8 target confusion matrix. 

6.6 Plot PCID and PFID for each target 

Plot PCID and PFID for each target with noise and with obscuration, where PCID is 

the diagonal element in the column of the target divided by the sum of the corresponding 

row elements, and PFID is the sum of the off-diagonal column elements divided by the 

sum of the column elements for the target. 

For the radar classification example, the subclass confusion matrix for each target 

with noise is diagonal, so the probability of correct identification (PCID) is one and 

probability of false identification (PFID) is zero, and no plots are necessary.  However, 

for each target with obscuration, a plot of PCID and PFID is generated for each 

obscuration level (see Figures 13 to 16).
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7 Conclusions and Recommendations 
 

This dissertation has described methods for building scattering center models of 

SAR targets, for using these models to train a classifier, and for employing this classifier 

to identify unknown targets and estimate their aspect angle.  Key conclusions and 

recommendations that follow from these methods are presented in this chapter. 

7.1 Conclusions 

Target classification using three-dimensional SAR data (which requires 

complicated relative motion between target and sensor) has improved performance 

relative to existing two-dimensional SAR ATR algorithms.  For example, momentary 

obscurations of the target or changes in the target (e.g., due to rotation of a turret) 

typically do not unduly confuse target tracking and identification. 

7.1.1 Feature selection 

Although Procrustes distance and shape space metrics are promising for ATR, 

their application to objects with an unequal number of scattering center points is 

problematic.  A feature set that solves this correspondence problem and that is invariant 

to object translation and rotation consists of the singular values of the object matrix 

augmented by the singular values of its second and third order monomial expansions.  A 

classifier that uses this singular value feature set displays significant immunity to white 

noise (added to scattering centers extracted from radar returns) for targets of military 

interest.  Also, when such targets are arbitrarily obscured, the classifier that uses this 

singular value feature set performs adequately. 
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7.1.2 Model building 

An algorithm that efficiently constructs three-dimensional target models is essential 

for the development of the classifier, since model construction using airborne sensor 

measurement of all targets over the entire viewing sphere would be prohibitive in time 

and cost.  The iterative extraction algorithm described here locates individual scattering 

centers from complex radar returns when the relative position between the target and 

sensor is known.  This extraction algorithm determines all three coordinates of each 

scattering center. 

7.1.3 Classifier design 

Separating a target class into multiple subclasses representing narrow windows of 

aspect angle performs well due to a lack of correlation between views of the same target 

in different windows.  The tests conducted here indicate that each target may be 

represented by 36 ten-degree subclasses.  The correlation of the scattering center points 

within each window allows each such set of points to be modeled by a normal 

distribution and thus characterized by a mean vector and a covariance matrix.  This result 

motivates the use of a Mahalanobis distance metric and enables the specification of 

practical thresholds for avoiding unreliable decisions in the presence of noise and clutter. 

7.1.4 Classifier performance 

The classifier developed here represents a long three-column object matrix (typically 

over a thousand rows) as a nineteen-dimensional feature vector.  Nevertheless, this 

classifier functions well for noisy test data and test data obscured by as much as 20%. 
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7.2 Recommendations 

Key suggestions for further development of the methods described and evaluated in 

this dissertation are presented in this section. 

7.2.1 Comprehensive testing 

More comprehensive testing of the entire classifier training and testing process is 

needed.  Future research should focus on verification using “more difficult” targets and 

types of noise and obscuration.  A classifier that performs well for a large set of realistic 

scenarios should be considered for use in a fielded system. 

7.2.2 Obscured target improvements 

The performance of the classifier proposed here could be improved for obscured 

targets.  Each target could be segmented into several sections, and the singular value 

features of the sections could be stored as a function of aspect angle.  If any obscured 

target does not match any unobscured target adequately, its features could be compared in 

Mahalanobis distance to features of the sections to identify a better match.  This 

segmentation technique should contribute to the solution of challenging obscuration 

problems. 

7.2.3 Improved classification algorithm with confidence measures 

Although matching an unknown target point to the closest subclass mean in 

Mahalanobis distance adequately classifies the eight military targets considered here, 

further improvements that specify a posterior probability for each target would lead to 

associated confidence measures. 
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The Mahalanobis distance to each target subclass mean is calculated by the current 

algorithm.  The posterior probability that an unknown point belongs to subclass i is 

exp(-ri
2/2)/Σiexp(-ri

2/2), where r is the Mahalanobis distance to the mean of subclass i and 

the summation is over all subclasses.  The posterior probability that an unknown point 

belongs to a specified target is the sum of all the posterior probabilities that an unknown 

point belongs to each subclass associated with this target.  These specifications yield, as 

required, unit total posterior probability for all targets (or, alternatively, for all 

subclasses). 

A standard confidence measure is the posterior probability associated with each 

target.  The decision to match an unknown point to a particular target improves as this 

confidence measure approaches one.  A practical implementation would rank the 

posterior probabilities from largest to smallest for all targets and select the target 

associated with the largest posterior probability.  If the next largest posterior probability 

is close to the largest posterior probability, the classifier could declare uncertainty and 

indicate the alternative targets as well.
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Appendix 1 
 

Resolution Study 
 

This appendix describes a resolution study [57] that uses eight 1700x1700 pixel 

images of four nearly identical targets, each at two slightly different aspect angles (Figure 

A1).  The raw SAR data is converted to magnitude-only form after all processing is 

completed. 

The four targets are standard mid-sized cars: Grand Prix, Grand Marquis, Intrepid, 

and Lumina.  In each scene all targets (cars) have the same physical orientation, so no 

rotation is needed for target comparison within a scene.  All eight scenes are within 30 

degrees in azimuth, but the illumination of the targets in each scene is unique.  Also, all 

targets are spaced far enough apart to ensure that the images and their shadows are 

distinct. 

1  Methodology 

1.1  Registration 

A 256x256 chip of the first target and its shadow is chosen as a reference.  This 

reference chip is shifted across the other three target chips in the same scene and the 

lowest Mean Squared Error (MSE) match for each target is recorded.  Each chip is 

normalized to unit energy to minimize differences due to angle of illumination and 

clutter.  The chips in the reference image are then registered to the chips of the same 

vehicle in the seven remaining images.  The registered images are normalized to unit 

energy and stored in large four-dimensional arrays. 
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1.2  Decreasing resolution by “coarsening” 

Standard filtering techniques and sub-sampling artificially decrease the resolution of 

all the images to four new resolutions which are one half, one fourth, one eighth, and one 

sixteenth times the resolution of the original images in each dimension.  These powers of 

two make the sub-sampling simple: to sub-sample by a factor of two, retain all the odd 

pixels in each dimension.  The term “coarsening” refers to this filtering and sub-sampling 

process. 

Starting with the original complex 256x256 images, coarsening by a factor of N 

involves first choosing a twenty tap equiripple filter that passes the lower 1/N of the 

complex frequency spectrum.  This equiripple filter minimizes the ringing and aliasing 

that would otherwise occur by truncating in the frequency domain to implement ideal 

low-pass filters.  The Parks-McClellan transform takes this one-dimensional filter and 

transforms it into an appropriate cone-shaped two-dimensional filter (see Figure A2).  

This two-dimensional filter is convolved with the complex-valued original high-

resolution image with the stipulation that the output is the same size as the input. 

After filtering, the resulting image is sub-sampled by a factor of N in both 

dimensions.  The set of chips now includes 256x256, 128x128, 64x64, 32x32, and 16x16 

pixel images.  Sub-sampling is critical: a low-resolution sensor will not only lose the high 

frequency information of the high-resolution sensor, but it will also produce fewer pixels. 

1.3  Confusion matrix 

A 32x32 confusion matrix is generated for each resolution (each car illuminated at a 

different azimuth angle is treated as a separate target).  The illumination profile of the 

same target changes drastically over a small angle when illuminated by a radar system. 
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A MSE is calculated for each target compared to the database of all thirty-two target 

images at each resolution.  Note, however, that the phase is important to the filtering and 

subsampling process: had phase been discarded prior to filtering, valuable information 

would have been lost, and because comparisons are made from one resolution to another, 

the MSEs are, by definition, normalized by the number of pixels in the chip.  All images 

are normalized to unit energy, and this normalization takes into account the number of 

pixels in the image. 

1.4  Spatial domain interpolation 

Lower resolution data should, on average, have a higher MSE when comparing a 

target to the thirty-one other targets.  Using interpolation in the spatial domain, artificial 

higher-resolution data is created.  Theoretically, once higher frequency information is 

eliminated it cannot be recovered, but interpolation creates an estimate of the lost data.  

This artificial higher resolution data can be treated as a separate resolution, and thus 

another confusion matrix is generated for these artificial resolutions. 

2 Data 

2.1  Average between-class MSE 

Each confusion matrix has all zeros on the main diagonal.  All off-diagonal elements 

correspond to a comparison of a target image to a “confuser”.  The average of the off-

diagonal elements is chosen as a simple metric to compare different resolutions.  The 

larger the average of this off-diagonal element, referred to here as the average between-

class MSE, the easier it is to separate these similar targets. 
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2.2  Probability of false alarm versus MSE threshold 

The data is a distribution of MSEs, so a plot of probability of false alarm versus MSE 

threshold is more descriptive than average between-class MSE (a single number).  A 

MSE threshold is chosen for comparison with all possible “confusers”: any target with an 

MSE greater than this threshold is correctly classified.   As there is only sample of each 

target, it is not possible to generate Receiver Operating Characteristic (ROC) curves.  

However, it is possible to express the probability of false alarm (confusing another target 

with the actual target) as a function of the MSE threshold for all resolutions, including 

resolutions artificially created using interpolation. 

3 Results 

As resolution is increased by a factor of two, the average between-class MSE 

increases by five to ten percent.  In this thirty-two target classification problem, the 

average between-class MSE for each of the resolution cells are as follows: .9186 for one, 

.8689 for one half, .7747 for one quarter, .6835 for one eighth, and .6340 for one 

sixteenth times the original resolution.  These values are plotted versus the log of the 

resolution (see Figure A3). 

The one quarter resolution is linearly interpolated to yield artificial one half resolution 

data, which was again interpolated to full resolution data to compare with the 

uninterpolated one half and one quarter resolution data.  The average between-class MSE 

for interpolated full resolution and one half resolution data is .6011 and .6355 

respectively. 
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The curves of probability of detection versus MSE threshold (see Figure A4) show 

the differences from one resolution to another.  Artificial resolutions created by 

interpolation are compared to high-resolution and low-resolution images (see Figure A5). 

4 Conclusions 

“Coarsened” images allow five to ten percent less discrimination than the original 

higher resolution images in this problem.  The larger average between-class MSE of the 

original images facilitates the correct identification of “confusers”.  Interpolating the 

“coarsened” images to an artificially higher resolution degrades target identification 

performance significantly.  Thus for this many-class target identification problem, 

interpolation is a poor method for reconstructing lost frequency information. 

“Coarsening” high-resolution images must remove more image information than 

clutter and noise at high frequencies, hence the five to ten percent degradation for each 

halving of the resolution.  The “coarsened” images, in addition to being harder to separate 

using a MSE criterion, are twice as small in each dimension.  This compression may 

justify the decreased discriminating power in some applications. 

5 Recommendations 

Obtaining additional experimental data in the form of multiple samples of the same 

target at the same illumination angle would allow comparisons of images of the same 

target type in addition to comparisons between two different target types.  ROC curves 

using a moving MSE threshold could then be generated to provide a more powerful 

means to compare sets of target images of different resolutions (including artificially 

interpolated resolutions). 
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If additional experimental data is unavailable, adding noise to the set of target images 

with second and possibly third order statistics equivalent to the clutter background of the 

original images would allow the same powerful means of comparing target identification 

performance between different levels of resolution, but would depart significantly from a 

“real world” scenario. 
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Figure A1.   High resolution SAR image of four similar cars: Grand Prix, Grand Marquis, 
Intrepid, and Lumina.  The image is complex-valued, and only its magnitude is presented.  
Note that the similarity of the four targets makes this a challenging many-class problem. 
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Figure A2.   Frequency domain representation of the two-dimensional equiripple filter 
with the Parks-McClellan transform that “coarsens” by a factor of two.  After this filter is 
implemented on the complex data with the constraint that the output image be the same 
size as the input image, the resulting image is subsampled by a factor of two to complete 
the “coarsening” process. 
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Figure A3.    Plot of the average between-class MSE versus the log of resolution.  Every 
doubling of the resolution of the original high resolution images causes a five to ten 
percent decrease in the average between-class MSE.  This decrease in between-class 
MSE makes it difficult to separate the true target image from the other 31 target images. 
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Figure A4.    Plot of probability of false alarm versus the MSE threshold for five different 
resolutions.  These resolutions are (from left to right on the graph) one sixteenth, one 
eighth, one fourth, one half, and one times the original resolution.  The probability of 
false alarm is the fractional chance of confusing another target with the actual target.  
Each doubling of the resolution shifts the probability of false alarm versus MSE threshold 
curve farther to the right and decreases the sensitivity of target identification performance 
to the MSE threshold. 
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Figure A5.   A plot of probability of detection versus MSE threshold for various 
resolutions.   The curves on the graph from left to right are one fourth resolution 
interpolated to one times the original resolution, one fourth resolution interpolated to one 
half times the original resolution, one fourth times the original resolution, one half times 
the original resolution, and one times the original resolution.  Interpolating the coarsened 
image to estimate lost information yields worse target identification performance than the 
coarsened images themselves. 
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Appendix 2 
 

Procrustes Distance and Shape Space 
 

Archeologists and biologists devised Procrustes distance as a “one-size-fits-all” 

metric, and it is a proven metric for classifying objects by shape [11].  Calculating the 

Procrustes distance between two objects requires representing both objects as sets of 

points.   To compare continuous objects, unique points (landmarks) common to both 

objects (e.g., the tip of the nose on an animal skull) are needed. 

1 Relevance to ATR problem 

In the three-dimensional ATR problem, an object is represented as a finite collection 

of points.  Radar ray-tracing algorithms also represent an object as a finite collection of 

point scattering centers.  The shape of an object is defined in terms of properties that are 

independent of any translation, rotation, or scaling of the object coordinates. 

If one knows the a priori probabilities of the targets in Euclidean (object) space and 

desires to design a classifier in a shape space, it is necessary to know the corresponding a 

priori probabilities in shape space.  If one accepts a uniform distribution for possible 

targets in object space (i.e., all possible shapes are equally likely), then decision 

boundaries in shape space may be calculated. 

2 Shape space experiments 

Two useful experiments are performed here.  First, assuming a uniform distribution of 

targets in object space, the resulting distribution in shape space is characterized.  Second, 

for a simple example, i.e., triangles in two dimensions, an isometric relationship between 

Procrustes distance and shape space is shown.  Although it is difficult to characterize the 

distribution of object coordinates in nature, a uniform distribution is a good starting point.  
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The triangles considered here are the simplest of objects, but should provide insight into 

how to handle more complicated objects. 

2.1  Characterizing shape space 

One thousand triangles are randomly generated such that each corner of the triangle is 

located inside the box bounded by (0, 0), (0, 1), (1, 1), and (1, 0).  Figure A6 shows the 

first ten randomly generated triangles.  The dimension of shape space for three points in 

two dimensions is two: initially there are six coordinates, but included are two 

dimensions for location, one dimension for uniform scale, and one dimension for 

rotation.  Therefore, two degrees of freedom remain [11].  Typically two points of the 

triangle (known) are mapped to two specific (known) points in the shape space allowing 

the recreation of the two by two permutation matrix.  Now the third point of the triangle 

multiplies the permutation matrix, and the coordinates of this transformed point are the 

shape space coordinates.   

 

Figure A6. Random triangles in object space.  Here selecting three points randomly in 
the box bounded by (0, 0), (0, 1), (1, 1), and (1, 0) forms each of ten triangles.  To 
classify these triangles by shape, it is necessary to find their distribution in two-
dimensional shape space. 
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Although there are many possible definitions of shape space, Kendall coordinates are 

a popular choice.  In these coordinates the first point is mapped to the point (-1/2, 0), the 

second point is mapped to the point (1/2, 0), and the coordinate of the third point is  
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where superscripts K designate Kendall coordinates, superscripts O designate object 

coordinates, and the coordinates are treated as complex numbers [11].  With this 

particular transformation to Kendall shape space, the shape of any triangle is represented 

as a single two-dimensional vector or complex number.  Objects with more than three 

points require mapping each point after the first two to a point in two dimensions.   

If triangles are uniformly distributed as shown in Figure A6, to show the distribution 

of the shape space coordinates (the coordinates of the third point of the triangles 

calculated from Equation (A-2)) are bivariate, Gaussian distributions (see Figure A7) 

requires hypothesis testing.  To test the hypothesis that the distribution F(x) of a random 

variable x equals a given function F0(x), the hypothesis that F(x) = F0(x) at a set of m - 1 

points {a1, a2,…, am-1} is examined as shown in Equation (A-2) using a Chi-Square test 

with m - 1 degrees of freedom. 
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The procedure involves calculating the difference between the number of samples 

in an interval, squaring the result, and dividing by the expected result in the interval.  The 

resulting values are summed over all the intervals to obtain a number for use with a Chi-

A-14 



Squared table.  If the weighted sum squared difference is less than the number from the 

table, the null hypothesis is accepted [35]. 

2.2  Relating shape space to Procrustes distance  

A triangle with Kendall shape coordinates (0, 1) is compared to all possible triangles 

in the shape space.  The Procrustes distance between two triangles, represented as 

complex vectors w and y, respectively, is calculated as a linear regression of y on w  
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where F denotes the full Procrustes metric, the * corresponds to the conjugate transpose, 

and the original objects have zero mean [11]. The one thousand triangles are projected 

into Kendall shape space, and their Kendall coordinates are shown as a scatter plot in 

Figure A7.   

3 Data 

For better representation of the probability density function, the shape space is 

segmented into uniform squares and converted to a discrete probability density function 

through a histogram.  The best normal distribution fitting this data has a mean of 

(0.0961, 0.0191) and a standard deviation of (1.9745, 1.9375).  To perform hypothesis 

testing, another histogram is generated for comparison using the postulated bivariate 

normal probability density function. 

The shape space may be uniformly sampled to generate a mesh plot of Procrustes 

distance versus the shape space coordinates of an arbitrary triangle compared to a 

reference triangle.  Figures A8 and A9 show that if reflections are ignored and if only the 
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half-plane containing the reference triangle is considered, Procrustes distance is 

isomorphic to the Kendall coordinate due to the lack of local minima. 

 

 
Figure A7. Scatter plot and approximate probability density function of a thousand 
triangles in shape space.  Here triangles that are uniformly distributed in Euclidean space 
are mapped to Kendall shape space, where for each triangle one point is mapped to the 
point (-1/2, 0), a second point is mapped to the point (1/2, 0), and the coordinate of the 
third point is found from Equation (A-1).  The data suggest an independent (no 
correlation between horizontal and vertical axis) bivariate normal probability density with 
mean (0, 0) and with a standard deviation for both variables of approximately two.  
Standard hypothesis testing shows that this distribution is Gaussian. 
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Figure A8. Plot of Procrustes distance in Kendall shape space.  Procrustes distance 
from Equation (A-3) is found for a reference triangle whose Kendall coordinate is (0, 1).  
There is an obvious minimum at (0, 1) (an exact match).  Although the Procrustes 
distance metric equates two objects that differ by any permutation matrix that combines 
any combination of translation, rotation, or scale, it does not account for reflections.  
There is a maximum at (0,  -0.75) which corresponds to a reflected version of the original 
triangle.  (A better distance metric may be the minimum of two Procrustes distances: the 
Procrustes distance between the two objects, and the Procrustes distance between one 
object and the reflection of the other object.) 
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Figure A9. Expanded plot of Procrustes distance in shape space.  Here the lack of 
correlation between Procrustes distance and distance in shape space is shown.  As the 
reference triangle is compared to “stretched” triangles (y increases from 1), Procrustes 
distance is least sensitive to change in shape space.  As the reference triangle is “warped” 
(x increases or decreases from 0), Procrustes distance is more sensitive to change in 
shape space.  Finally, as the reference triangle is “shrunk” (y decreases from 1), 
Procrustes distance is most sensitive to change in shape space. 

   

4 Results 

The probability density function for uniformly distributed triangles mapped to the 

shape space is approximately a diagonal-covariance bivariate normal distribution, i.e., 
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where (µx, µy) ≅ (0, 0); σx ≅ 2; σy ≅ 2 [35]. 
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The Chi-Square test to accept x and y as normally distributed with mean 0, standard 

deviation 2, and a diagonal covariance matrix requires accepting three null hypotheses 

that are tested using the sum squared difference q: (1) the x coordinates have a Gaussian 

distribution with mean 0 and standard deviation of 2, (2) the y coordinates have a 

Gaussian distribution with mean 0 and standard deviation of 2, and (3) the x and y 

coordinates are independent 
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where ki is actual data and F0(x) is the postulated CDF (note F0(xi+1)-F0(xi) are the 

expected values of the pdf integrated over the interval xi to xi+1).  Rather than show that 

the x and y coordinates are independent directly, the hypothesis that the angle arctan(y/x) 

is uniformly distributed between 0 and π is tested instead. 

With 95% confidence, the test for a normal distribution in the x direction yields a q of 

6.98 < 38.89, the test for a normal distribution in the y direction yields a q of 2.75 < 

38.89, and finally the test for a uniform arctan(y/x) yields a q of 4.55 < 16.9, where the 

larger quantity in each case is the Chi-Squared statistic.  These results validate all three 

null hypotheses and verify that the distribution of the Kendall coordinates is described by 

Equation (A-4) (with an acceptable alpha error of 5%). 

To verify that the Kendall coordinates and Procrustes distance are isometric (ignoring 

reflections), all points within the half-plane are tested to insure that there are no local 

minima.  Using the complex expression for Procrustes distance in Equation (A-3), there 

is no point in the area of interest where fx and fy are both zero and the Hessian     (fxx * fyy 

- fxy
2) is positive, where the single and double subscripts designate the first and second 
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partial derivatives, respectively, of the Procrustes distance df.  Also, all points at which fx 

are fy are zero are such that the only minima is at (0, 1), which specifies the coordinate of 

the standard object against which the other objects are compared.  

5 Conclusions 

A uniform distribution of triangles in object space corresponds to an independent 

bivariate normal distribution in Kendall shape space with mean (0, 0) and the same 

standard deviation in both coordinate directions.  This result is due to the interactions of 

multiple independent variables in object space that generate the shape space coordinate in 

Equation (A-1), which indicate that the Central Limit theorem applies so that the Kendall 

shape coordinate is approximately normal [35]. For a large variety of targets in the object 

space the Central Limit theorem should hold and the shape space distribution should be 

close to normal.  For example, if triangular facets from large objects are used, the variety 

of facets for all targets should be sufficient to generate a normally distributed shape 

space. 

Procrustes distance is, by definition, independent of rotation, translation, and scale, 

and objects in the shape space are equivalent over these transformations.  As expected, 

distance in shape space and Procrustes distance are isometric if reflection is ignored.  

However, there is no simple Euclidean distance relationship between Kendall coordinates 

and Procrustes distance. 

6 Correspondence problems 

A set of scattering centers is an efficient way to represent any complex radar return.  

If a set of scattering centers for a target is projected to shape space, all translations, 

rotations, and scalings of the target are equivalent.  If Procrustes distance is chosen as a 
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metric for comparing unknown to known targets, then testing all possible combinations 

of rotation, translation, and scale of the unknown targets can be avoided. 

However, in general two targets compared in an ATR algorithm have a different 

number of points with no known correspondence.  This lack of correspondence may lead 

to an intractable combinatorial problem; e.g., there are about 100 trillion possible ways to 

match a twenty-point object to a thirty-point object.  An approach in which order is 

unimportant can reduce this number to about 30 million possible ways, but this result is 

still not satisfactory.  Unless there is a way to pare down or efficiently search the set of 

all possible twenty-point matches in the last example, a metric that preserves the desired 

translation, rotation, and scale equivalence and that avoids the correspondence problems 

is required. 



 

Bibliography 
 
 
[1] Arnold, G., R. Claypoole, Jr., V. Velten, and K. Sturtz,  “Synthesizing Invariant 3-D 

Rigid Scattering Centers,” Proc. SPIE, Vol. 4382, pp. 395-403, Orlando, FL, 2001. 
 
[2] Arnold, G. and K. Sturtz,  "Complexity Analysis of ATR Algoritms Based on 

Invariants," Proc. IEEE Computer Vision Beyond the Visible Spectrum: Methods 
and Applications Workshop, pp. 27-36, Hilton Head, SC, Jun 2000. 

 
[3] Arnold, G. and K. Sturtz,  “Geometric Object/Image Relations for Radar,” Proc. 

SPIE, Vol. 4053, pp. 538-545, Orlando, FL, Apr 2000. 
 
[4] Arnold, G., K. Sturtz, and V. Velten,  "Lie Group Analysis in Object Recognition," 

Proc. DARPA Image Understanding Workshop, Vol. 2, pp. 1173-1178, May 1997. 
 
[5] Arnold, G., K. Sturtz, and V. Velten,  “Quasi-invariants of the thermophysical 

model,” Proc. DARPA Image Understanding Workshop, pp. 883-892, Monterey, 
CA, Nov 1998. 

 
[6] Arnold, G., K. Sturtz, and V. Velten, "Invariants of the LWIR Thermophysical 

Model," Proc. IEEE Computer Vision Beyond the Visible Spectrum: Methods and 
Applications Workshop, pp. 49-58, Fort Collins, CO, Jun 1999. 

 
[7] Arnold, G., K. Sturtz, and V. Velten, "Quasi-Invariants of the Thermophysical 

Model," Proc. DARPA Image Understanding Workshop, Vol. 2, pp. 883-894, 
Monterey, CA, Nov 1998. 

 
[8] Arnold, G., K. Sturtz, V. Velten and N. Nandhakumar,  "Dominant Subspace 

Invariants," IEEE Transactins on Pattern Analysis and Machine Intelligence, Vol. 
22,  pp. 649-662, Jul 2000. 

 
[9] Binford, T. and T. Levitt,  “Quasi-invariants: Theory and exploitation,” Proc. 

DARPA Image Understanding Workshop, pp. 819-830, Washington DC, 1993. 
 
[10] Clark, L. and V. Velten,  "Image Characterization for Automatic Target Recognition 

Algorithm Evaluations," Optical Engineering, Vol. 30, pp. 147-153, Feb 1991. 
 
[11] Dryden, I. and K. Martia, Statistical Shape Analysis, John Wiley and Sons, 1999. 
 
[12] Gauder, M., V. Velten, L. Westerkamp, J. Mundy, and D. Forsyth,  "Thermal 

Invariants for Infrared Target Recognition," Proc. Third Automatic Target 
Recognizer Systems and Technology Conference, Jun 1993. 

 

BIB-1 



 

BIB-2 

[13] Gerry, M., L. Potter, I. Gupta, and A. Van Der Merwe, “A Parametric Model for 
Synthetic Aperture Radar Measurement,” IEEE Transactions on Antennas and 
Propagation, Vol. 47, pp. 1180-1181, Jul 1999. 

 
[14] Healey, G. and D. Slater,  “Using illumination invariant color histogram descriptors 

for recognition,” Proc. IEEE CVPR, pp. 355-360, Seattle, WA, Jun 1994. 
 
[15] Healey, G.,  “Using color to segment images of 3-d scenes,” Proc. SPIE, Vol. 1468, 

pp. 814-825, Orlando, FL, 1988. 
 
[16] Henle, M., Modern Geometries, The Analytic Approach, Prentice-Hall, 1997. 
 
[17] Meyer, G., S. Gustafson, G. Arnold,  “Extracting Models from radar Data for 3-D 

Target ID,” Proc. SPIE, Vol. 4727, pp. 38-45, Orlando, FL, Apr 2002. 
 
[18] Meyer, G., S. Gustafson, G. Arnold,  “The Effect of SAR Resolution on Target 

Identification,” Proc. SPIE, Vol. 4382, pp. 338-345, Orlando, FL, Apr 2001. 
 
[19] Meyer, G., S. Gustafson, G. Arnold,  “Three-Dimensional Identification of Moving 

Targets Using Synthetic Aperture Radar Returns”, Proc. JEWC, San Antonio, TX, 
May 2002. 

 
[20] Meyer, G., S. Gustafson, G. Arnold,  “Using Procrustes distance and shape space for 

Automatic Target Recognition,” Proc. SPIE, Vol. 4667, pp. 66-73, San Jose, CA, 
Jan 2002. 

 
[21] Michel, J., N. Nandhakumar, and V. Velten,  "Thermophysical Algebraic Invariants 

from Infrared Imagery for Object Recognition," IEEE Transactions on PAMI, Vol. 
19, pp. 41-51, Jan 1997. 

 
[22] Michel, J., N. Nandhakumar, and V. Velten,  “Thermophysical algebraic invariants 

from infrared imagery for object recognition,” IEEE Transactions on PAMI, Vol. 
19, pp. 41-51, Jan. 1997. 

 
[23] Mundy, J. and A. Zisserman, Eds., Geometric Invariance in Computer Vision, MIT 

Press, 1992. 
 
[24] Mundy, J., A. Zisserman, and D. Forsyth, Eds., Applications of Invariance in 

Computer Vision, Proc. Second Joint European-US workshop, Springer-Verlag, 
1994. 

 
[25] Nandhakumar, N., G. Arnold, J. Michel, G. Tsihrintzis, and V. Velten, "Robust 

Thermophysics-based Interpretation of Radiometrically Uncalibrated IR Images for 



 

BIB-3 

ATR and Site Change Detection," IEEE Transactions on Image Processing special 
issue on ATR, Vol. 6, pp. 65-78, Jan 1997. 

 
[26] Nandhakumar, N., G. Arnold, J. Michel, G. Tsihrintzis, and V. Velten,  "Site 

Change Detection in IR Imagery from Alpha-Stable modeled Thermophysical 
Invariant Features," Proc. SPIE, Vol. 2645, pp. 122-133, Washington, DC, Oct 
1995. 

 
[27] Nandhakumar, N., V. Velten, and J. Michel, "Thermophysical Affine Invariants for 

IR Imagery for Object Recognition," Proc. IEEE Workshop on Physics-Based 
Modeling in Computer Vision, pp. 48-54, Boston, MA, Jun 1995. 

 
[28] Nayar, S., and R.D. Bolle,  “Reflectance ratio: A photometric invariant for object 

recognition,” Proc. ICCV, pp. 280-284, 1993. 
 
[29] Nichols, T., J. Thomas, W. Kober and V. Velten,  "Interference-Invariant Target 

Detection in Hyperspectral Images," Proc. SPIE, Vol. 3372, pp.176-187, Apr 1998. 
 
[30] Nichols, T., J. Thomas, W. Kober, D. Arnold and V. Velten,  "Canonical 

Correlation Analysis of LWIR Imagery in the Frequency Domain," Proc. SPIE, Vol. 
3371, pp. 460-470, Apr 1998. 

 
[31] O’Neill, B., Elementary Differential Geometry, Academic Press, 1966. 
 
[32] Olver, P., Applications of Lie Groups to Differential Equations, pp. 73-75, Springer-

Verlag, 1986. 
 
[33] Olver, P., Classical Invariant Theory, London Mathematical Society Student Texts, 

Vol. 44, Cambridge University Press, 1999. 
 
[34] Olver, P., Equivalence, Invariants, and Symmetry, Cambridge University Press, 

1995. 
 
[35] Papoulis, A.,  Probability, Random Variables, and Stochastic Processes, Mc-Graw 

Hill, 1991. 
 
[36] Quan, L.,  “Invariants of six points and projective reconstruction from three 

uncalibrated images,” IEEE Transactions on PAMI, Vol. 17, pp. 34-46, Jan 1995. 
 
[37] Rivlin, E. and I. Weiss, “Local invariants for recognition,” IEEE Transactions on 

PAMI, Vol. 17, pp. 226-238, Mar 1995. 
 



 

BIB-4 

[38] Rothwell, C., D. Forsyth, A. Zisserman, and J. Mundy,  “Extracting projective 
structure from single perspective views of 3d point sets,” Proc. ICCV, pp. 573-582, 
Berlin, 1993. 

 
[39] Ruck, G., Radar Cross Section Handbook, p. 591, Plenum Press, 1970. 
 
[40] Sattinger, D. and O. Weaver, Lie Groups and Algebras with Applications to 

Physics, Geometry, and Mechanics, Springer-Verlag, 1986. 
 
[41] Shashua, A.,  “Algebraic functions for recognition,” IEEE Transactions on PAMI, 

Vol. 17, pp. 779-789, Aug 1995. 
 
[42] Shasua, A. and M. Werman,  “Trilinearity of three perspective views and its 

associated tensor,” Proc. ICCV, pp. 920-925, Cambridge, MA, Jun 1995. 
 
[43] Slater, D. and G. Healey,  “Exploiting an atmospheric model for automated 

invariant material classification in hyperspectral imagery,” Proc. SPIE, Vol. 3372, 
pp. 60-71, Orlando, FL, Apr 1998. 

 
[44] Stiller, P.,  “General approaches to recognizing geometric configurations from a 

single view,” Proc. SPIE, Vol. 3168, pp. 262-273, San Diego, CA, Jul 1997. 
 
[45] Stiller, P.,  “Object recognition via configuration of lines,” Proc. SPIE, Vol. 3454, 

pp. 76-86, San Diego, CA, Aug 1998. 
 
[46] Stiller, P., C. Asmuth, and C. Wan,  “Invariants, indexing, and single view 

recognition,” ARPA Image Understanding Workshop, pp. 1432-1428, Monterey, 
CA, Nov1994. 

 
[47] Stiller, P., C. Asmuth, and C. Wan,  “Single view recognition – the perspective 

case,” Proc. SPIE, Vol. 2826, pp. 226-235, Denver, CO, Aug 1996. 
 
[48] Stuff, M.,  “Three-dimensional analysis of moving target radar signals: Methods and 

implications for ATR and feature aided tracking,” Proc. SPIE, Vol. 3721, pp. 485-
496, Orlando, FL, Apr 1999. 

 
[49] Stuff, M., PhD dissertation, University of Michigan, to appear, 2002. 
 
[50] Velten, V.,  "SAR Image Invariants from 3-D Scattering Centers,” Proc. SPIE , Vol. 

4382, pp. 367-378, Orlando, FL, 2001. 
 
[51] Velten, V.,  “Geometric Invariance for Synthetic Aperture Radar (SAR) Sensors: 

Experimental Results,” Proc. SPIE, Vol. 3721, pp. 520-531, Orlando, FL, Apr 1999. 
 



 

BIB-5 

[52] Velten, V.,  “Geometric Invariance for Synthetic Aperture Radar (SAR) Sensors,” 
Proc. SPIE, Vol. 3370, p. 176-187, Orlando, FL, Apr 1998. 

 
[53] Velten, V., private communication, 2002. 
 
[54] Velten, V., T. Ross, J. Mossing, S. Worrell, and M. Bryant,  "Standard SAR ATR 

Evaluation Experiments using the MSTAR Public Release Data Set," Proc. SPIE, 
Vol. 3370, p. 566-573, Orlando, FL, Apr 1998. 

 
[55] Weinshall, D.,  “Direct computation of qualitative 3d shape and motion invariants,” 

IEEE Transactions on PAMI, Vol. 13, pp. 1236-1240, Dec 1991. 
 
[56] Weinshall, D., Model-based invariants for 3d vision,” in Proc. IEEE CVPR, pp. 

695-696, Cambridge, MA, Jun 1993. 
 
[57] Weiss, I.,  “Model-based recognition of 3d objects from one view,” Proc. DARPA 

Image Understanding Workshop, pp. 641-652, Monterey, CA, Nov 1998. 
 
[58] Weiss, I.,  “Noise-resistant invariants of curves,” IEEE Transactions on PAMI, Vol. 

15, pp. 943-948, Jul 1993. 
 
[59] Zerroug, M. and R. Nevatia,  “Quasi-invariant properties and 3d shape recovery of 

non-straight, non-constant generalized cylinders,” Proc. IEEE CVPR, pp. 96-103, 
Cambridge, MA, 1993. 

 
[60] Zollars, R. and Z. Hashim, “XPATCH Overview,” 

http://www.saic.com/products/software/xpatch, 2002. 

http://www.saic.com/products/software/xpatch


REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of the collection of information, including 
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

11-04-2003 
2. REPORT TYPE  

Doctoral Dissertation 
     

3. DATES COVERED (From – To) 
Sep 1999 – Apr 2003 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

4.  TITLE AND SUBTITLE 
 
 CLASSIFICATION OF RADAR TARGETS USING INVARIANTS 
 

5c.  PROGRAM ELEMENT NUMBER 

5d.  PROJECT NUMBER 
 
5e.  TASK NUMBER 

6.  AUTHOR(S) 
 
Meyer, Gregory, Capt, USAF 
 
 
 5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
  Air Force Institute of Technology 
 Graduate School of Engineering and Management (AFIT/EN) 
 2950 Hobson Way, Building 640 
 WPAFB OH 45433-7765 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
     AFIT/DS/ENG/03-04 

10. SPONSOR/MONITOR’S ACRONYM(S) 
AFRL/SNAT 
 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 Automatic Target Recognition Branch, Sensor’s Directorate, AF Research Laboratory 
 Dr. D. Gregory Arnold 
 2241 Avionics Circle  Building 620 DSN:  785-1115 
 W-PAFB, OH  45433-7321   

11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) N/A 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
       
        APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

 
13. SUPPLEMENTARY NOTES  
 
 
 
14. ABSTRACT  

 Automatic target recognition (ATR) using radar commonly relies on modeling a target as a collection of point scattering centers.  
Features extracted from these scattering centers for input to a target classifier may be constructed that are invariant to translation and rotation in that 
they are independent of the position and aspect angle of the target in the radar scene. 

Here an iterative approach to efficiently build scattering center models is developed, and the shape space of these models is investigated.  
Experimental results are obtained for sets of three-dimensional scattering centers compressed to nineteen-dimensional feature sets, each consisting 
of the singular values of the matrix of scattering centers augmented with its second and third order monomial expansions.  These feature sets are 
invariant to rotation and translation and permit the comparison of targets modeled by different numbers of scattering centers.  A Mahalanobis 
distance metric is used that effectively identifies targets of military interest under the “real world” conditions that include noise and obscuration. 
 In particular, eight targets of military interest are sampled in tenth-degree aspect angle increments to extract scattering centers, and 36 
subclasses that encompass ten degrees are specified for each target.  Each subclass is compressed to a nineteen-dimensional singular value feature 
set, and because the spatial distribution of the 100 nineteen-dimensional points in each subclass is approximately Guassian, a mean and a covariance 
matrix represent each subclass.  An unknown target is represented as point in the nineteen-dimensional feature space and matched to the closest 
subclass in Mahalanobis distance (distance in the direction of the principal eigenvector of the subclass covariance matrix).  It is found that noisy 
targets are matched exactly in both target identity and aspect angle (to within ten degrees), whereas targets obscured by 20% are identified correctly 
in 80% of the test cases. 
This research has developed a practical means (1) to build scattering center models, (2) to compress each scattering center set into a small set of 
features for target classification, and (3) to implement classifiers that effectively function in the presence of noise and obscuration for targets of 
military interest. 
15. SUBJECT TERMS 
      target recognition, invariance, obscuration, Guassian noise, eigenvalues      

16. SECURITY CLASSIFICATION OF: 19a.  NAME OF RESPONSIBLE PERSON 
Steven C. Gustafson, Associate Professor, USAF (ENG) 

a. REPORT 
 

U 

b. ABSTRACT 
 

U 

c. THIS PAGE 
 

U 

17. LIMITATION OF  
     ABSTRACT 
 
 

UU 

18. NUMBER  
      OF 
      PAGES 
 

106 

19b.  TELEPHONE NUMBER (Include area code) 
(937) 255-3636, ext. 4598; e-mail:  steven.gustafson@afit.edu 

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 


	Introduction
	Background
	Invariance
	Scattering centers
	Existing two-dimensional classifiers

	Three-dimensional MAGI concept
	Three-dimensional reconstruction
	3D MAGI algorithm

	Problem statement
	Three-dimensional classification
	Designing an optimal three-dimensional classifier


	Model Building
	Three-dimensional scattering model
	Extraction procedure
	Extracting amplitude and “wrapped” phase
	Unwrapping phase
	Solving for scattering center coordinates

	Algorithm validation and test
	Implementation
	Impact on classifier design

	Singular Value Features
	Definition of singular values
	Invariance of singular values
	Monomial expansion of object matrix
	Determining the feature set
	Feature set definition

	Classifier Design
	Classifier design and compromises
	Scattering center stability
	Target models
	Singular value feature extraction
	Creating target subclasses
	Classifier training
	Decision Making

	Classifier Test
	Replicating “real world” conditions
	Calculating confusion matrices
	Calculating figures of merit
	Test results
	Comparisons with existing classifiers

	Contributions
	Extract “cloud of points” model
	Generate singular value features
	Characterize aspect-angle subclasses
	Find clutter threshold and classify test points
	Generate confusion matrices
	Plot PCID and PFID for each target

	Conclusions and Recommendations
	Conclusions
	Feature selection
	Model building
	Classifier design
	Classifier performance

	Recommendations
	Comprehensive testing
	Obscured target improvements
	Improved classification algorithm with confidence measures


	Appendix 1.pdf
	Resolution Study
	Methodology
	1.1  Registration
	1.2  Decreasing resolution by “coarsening”
	1.3  Confusion matrix

	Data
	Results
	Conclusions
	Recommendations


	Appendix 2.pdf
	Appendix 2
	Procrustes Distance and Shape Space
	Relevance to ATR problem
	Shape space experiments
	2.1  Characterizing shape space
	2.2  Relating shape space to Procrustes distance

	Data
	Results
	Conclusions
	Correspondence problems





